令和7年度

機械設備積算基準書及び解説

岡山県土木部

目 次

第区編 機械設備

第1章	一般共通	
	① 目的 ····· IX	i- 1- 1
	② 適用範囲 ····· IX	i- 1- 2
	③ 請負工事費の構成 · · · · · · IX	i- 1- 3
	④ 請負工事費の費目 · · · · · · IX	-1-4
	⑤ 請負工事費の積算 · · · · · · · IX	-1-12
	1 製作原価 · · · · · · · · · · IX	-1-12
	2 据付工事原価 ····· IX	i- 1-13
	3 設計技術費 ····· IX	1-20
	4 一般管理費等 ····· IX	1-20
	5 消費税等相当額 ····· IX	1-20
	6 材料等の価格等の取扱い · · · · · IX	1-20
	7 支給品の取扱い ・・・・・・ IX	1-20
	8「処分費等」の取扱い ····· IX	1-21
	9 間接労務費,工場管理費の項目別対象表 ・・・・・・・ IX	1-21
	10 共通仮設費, 現場管理費の項目別対象表 ・・・・・・・ IX	1-22
	11 設計技術費,一般管理費等の項目別対象表 ・・・・・・・・ IX	1-23
第2章	水門設備	
	① 河川用水門設備 ····· IX	-2-1
	② ダム用水門設備 ・・・・・・・・・ IX	-2-35
第3章	ゴム引布製起伏ゲート設備 ····· IX	-3-1
第4章	揚排水ポンプ設備	
	① 揚排水ポンプ設備 ······ IX	i- 4- 1
	② コラム形水中ポンプ設備 · · · · · IX	-4-31
	③ 除塵設備 ····· IX	-4-43
第5章	ダム施工機械設備 ・・・・・・・・・・・・・・・・・・・・・ IX	-5-1
第6章	トンネル換気設備	
	① ジェットファン設備 ····· IX	
	② 送風機設備 ····· IX	
	トンネル非常用施設 ····· IX	
	消融雪設備 ······ IX	
第9章		
第10章	共同溝付帯設備 ····· IX	_10- 1
第11章	駐車場設備	
	① 自走式駐車場設備 · · · · · · · IX	
	② 機械式駐車場設備 · · · · · · · IX	
第12章	車両重量計設備IXIX	
第12 音	東西計測設備 Ⅳ	131

第14章 道路用昇降設備 ① エレベーター設備 ····· IX-14- 1 ② エスカレーター設備 ····· IX-14-4 **第15章 ダム管理設備 ······· IX**-15- 1 第16章 遠方監視操作制御設備 ····· IX-16- 1 **第18章 鋼製付属設備 ····· IX**-18- 1 第19章 塗装 ······ IX-19- 1 第20章 機械設備点検・整備業務 ① 一般共通 ······ IX-20- 1 ② 水門設備 ····· IX-20-13 ④ トンネル換気設備・トンネル非常用施設 ………………… IX-20-39 (5) 道路排水設備 · · · · · · · · IX - 20 - 43 ⑥ 消融雪設備 · · · · · · · · IX - 20 - 45 第21章 機械設備設計業務委託 ① 一般共通 ······ IX-21- 1 ③-1 揚排水ポンプ設備 ······ IX-21-7 ③-2 除塵設備 ····· IX-21-10 ④ ダム施工機械設備 ……………………… X-21-13 ⑤-1 トンネル換気設備 ····· IX-21-14 ⑤-2 トンネル非常用施設 IX-21-21 ⑦ 道路排水設備 ······ IX-21-31 8 共同溝付帯設備 ····· IX-21-34 ⑤ 遠方監視操作制御設備 ······ IX-21-37

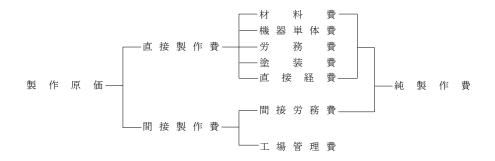
第IX編 機械設備

第1章 一般共通

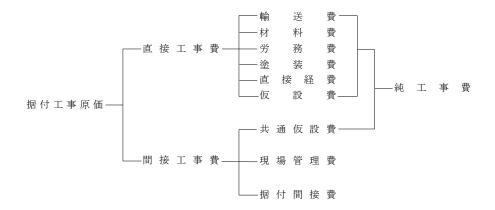
① 目的


この積算基準は、公共工事に係る土木機械設備の製作据付工事の工事費の算定について必要な事項を定めることにより、請負工事の予定価格の算定を適正にすることを目的とする。

② 適用範囲


この積算基準は、岡山県の治水事業、道路事業等における水門設備、ゴム引布製起伏ゲート設備、揚排水ポンプ設備、ダム施工機械設備、トンネル換気設備、トンネル非常用施設、消融雪設備、道路排水設備、共同溝付帯設備、駐車場設備、車両重量計設備、車両計測設備、道路用昇降設備、ダム管理設備、遠方監視操作制御設備、河川浄化設備、鋼製付属設備の製作据付工事に適用する。

③ 請負工事費の構成


請負工事費の構成は、次のとおりとする。

1 製作原価

2 据付工事原価

④ 請負工事費の費目

工事費の費目

1 製作原価

製作原価の費目は、次のとおりとする。

1-1 直接製作費

(1) 材料費

製作に当って、直接及び補助的に使用される材料の費用である。

(イ) 直接材料費

設備の構成要素である製品の製作に関して直接消費され原則としてその製品の基本的実体となって再現される材料及び部品の費用。

(口) 補助材料費

設備の構成要素である製品の製作に関して、補助的に消費され、製作過程において多くは消滅 し、原則として製品の基本的実体となって再現されない材料の費用。

(2) 機器単体費

設備の構成要素である製品の製作に当って、そのまま組込むことが出来る機器、又は単体の製品で設備の構成要素となるものの費用である。

(3) 労務費

設備の構成要素である製品の製作に直接従事する作業者に対して支払われる賃金であり、基準内 給与、通勤手当、諸手当、賞与、退職金及び退職給与引当金繰入額からなる。

なお、工場社内試験及び工場立会確認のために必要となる製品の仮組立・調整・解体に直接従事する作業員に対して支払われる賃金は、労務費に含まれる。

(4) 塗装費

工場において行う製品の塗装に要する費用である。

(5) 直接経費

設備の構成要素である製品の製作に必要な木型費、試運転費、特別経費に要する費用である。

(イ) 木型費

木型費が鋳放し単価に含まれていない場合の木型に要する費用

(口) 試運転費

特に必要と認められる試運転に要する費用

(ハ) 特別経費

特に必要があると認められる模型実験費, 特許使用料等に要する費用

1-2 間接製作費

工場 (据付工事部門等を除く) の管理運営のために要する費用及び製作品の製造設計に係る費用 (システム設計費用を除く) である。

なお、工場社内試験及び工場立会確認のために必要となる費用のうち、試験装置・計器等の費用 は工場管理費に含まれ、試験・運転費用は間接労務費、工場管理費に含まれる。

(1) 間接労務費

(イ) 間接工・工場管理業務者の給与手当等

工場における間接工・工場管理業務に従事した従業員に支払われる,基準内給与,通勤手当, 諸手当、賞与、退職金及び退職給与引当金繰入額等

(ロ) 製造設計に係る従業員並びに間接工の給与手当等

製作品の製造設計に直接従事した従業員並びに間接工の基準内給与,通勤手当,諸手当,賞与, 退職金及び退職金給与引当金繰入額等

- (2) 工場管理費
- (イ) 消耗工具備品費 消耗工具,備品等の費用
- (ロ) 工場消耗品費 消耗品等の費用
- (ハ) 事務用品費

事務用消耗品,新聞,参考図書等の購入費

(ニ) 修繕維持費

建物,機械,装置等の修繕維持費,倉庫物品の管理費等

(ホ) 通信交通費

通信費,交通費及び旅費

(へ) 会議費

会議に要する費用

(ト) 交際費

来客等の応対に要する費用

(チ) 法定福利費

従業員に関する労災保険料、雇用保険料・健康保険料及び厚生年金保険料の法定の事業主負担額等に要する費用

(リ) 福利厚生費

工場の従業員に係る慰安娯楽,貸与被服,医療,慶弔見舞い等福利厚生,文化活動等に要する 費用

(ヌ) 動力用水光熱費

工場における電気料、水道料、ガス料、重油等燃料費等に要する費用

(ル) 印刷製本費

工場における資料のコピー, 写真, 印刷製本等に要する費用

(ヲ) 試験試作費

製品, 材料, 機械等の検査料及び製品開発, 研究, 設計, 試作等に要する費用

(ワ) 教育訓練費

工場における技能養成, 啓発, 資格取得, 安全訓練等に要する費用

(カ) 地代家賃

工場の土地, 建物等の借地借家料に要する費用

(ヨ) 保険料

工場の建物、機械、自動車等の損害保険料、火災保険に要する費用

(タ) 租税公課

固定資産税,自動車税,軽自動車税等の租税公課。ただし機械経費の機械器具等損料に計上された租税公課は除く。

(レ) 減価償却費

工場の有形固定資産, 無形固定資産, 繰延資産等の減価償却額

(ソ) 製作外注経費

製品の加工・塗装等を専門業者等に外注する場合に必要となる費用

(ツ) 工場内運搬費

製品の工場内運搬等に要する費用、製品の輸送に伴う荷造り費

(ネ) 雑費

(イ)から(ツ)までに属さない諸費用

2 据付工事原価

据付工事原価の費目は,次のとおりとする。

2-1 直接工事費

(1) 輸送費

製作工場の所在地から据付現場までの製品の輸送に要する費用である。

(2) 材料費

工事を施工するに当り, 直接及び補助的に使用される材料の費用である。

(イ) 直接材料費

直接に消費され、原則として設備の基本的実体となって再現される材料及び部品の費用

(口) 補助材料費

補助的に消費され据付過程において多くは消滅し、原則として設備の基本的実体となって再現 されない材料の費用

(3) 労務費

工事を施工するに当り,直接従事する作業者に対して支払われる賃金であり,基準内給与,通勤 手当, 諸手当,賞与からなる。

(4) 塗装費

据付時に行う設備の塗装に要する費用である。

(5) 直接経費

工事を施工するに当り,直接必要な特許使用料,水道光熱電力料,機械経費,試運転経費及び特別経費等に要する費用である。

(イ) 特許使用料

契約に基づき使用する特許の使用料

(口) 水道光熱電力料

工事を施工するために必要とする電力, 電灯使用料及び用水使用料

(ハ) 機械経費

工事を施工するために必要とする機械器具の経費で、機械損料、運転経費等の合計額

(二) 試運転経費等

特に必要と認められる総合試運転等に要する費用

(ホ) 特別経費

特に必要があると認められる費用

(6) 仮設費

工事を施工するために必要とする仮設物の設置・解体,電力等の供給設備,仮道,仮橋,現場補 修、交通管理等に要する費用。

2-2 間接工事費

(1) 共通仮設費

共通仮設費の項目及び内容は、次のとおりとする。

(イ) 運搬費

- a 機械器具の運搬等に要する費用
- b 現場内における機材の運搬に要する費用

(口) 準備費

- a 工事着手時の準備及び完成時の後片付けに要する費用
- b 調査, 測量, 丁張等に要する費用
- c 伐開,整地及び除草に要する費用

(ハ) 事業損失防止施設費

工事施工に伴って発生する騒音,地盤沈下,地下水の断絶等の事業損失を未然に防止するための仮施設の設置費・撤去費及び当該施設の維持管理等に要する費用

(ニ) 安全費

- a 安全施設等に要する費用
- b 安全管理等に要する費用
- c aからbに掲げるもののほか工事施工上必要な安全対策等に要する費用

(ホ) 役務費

- a 土地の借上げに要する費用
- b 電力,用水等の基本料
- c 電力設備用工事負担金

(へ) 技術管理費

- a 品質管理のための試験等に要する費用
- b 出来形管理のための測量等に要する費用
- c 工程管理のための資料の作成に要する費用
- d 完成図書,設備管理台帳等の作成及び電子納品等に要する費用
- e aからdにまで掲げるものの他,技術管理上必要な資料の作成に要する費用

(ト) 営繕費

- a 現場事務所, 倉庫及び材料保管場の営繕に要する費用
- b 労働者宿舎の営繕に要する費用又は、労働者の宿泊に要する費用
- c 労働者の輸送に要する費用
- d 営繕費に係る敷地の借上げ費用

(2) 現場管理費

工事を施工するに当り、工事を管理するために必要な共通仮設費以外の費用である。

(イ) 労務管理費

現地採用の労働者及び事務員に係る次の費用

- a 募集及び解散に要する費用(赴任旅費及び解散手当を含む)
- b 慰安, 娯楽及び厚生に要する費用
- c 直接工事費及び共通仮設費に含まれない作業用具及び作業用被服の費用
- d 賃金以外の食事, 通勤等に要する費用
- e 労災保険法等による給付以外に災害時に事業主が負担する費用
- (口) 事務員給料手当等

現地採用の事務員の給料,諸手当(危険手当,通勤手当等)及び賞与

(ハ) 退職金

現地採用の事務員に係る退職金及び退職給与引当金繰入額

(二) 事務用品費

現地における事務用消耗品,新聞,参考図書等の購入費

(ホ) 通信交通費

現地における通信費, 交通費及び旅費

(へ) 交際費

現場への来客等の応対に要する費用

(ト) 法定福利費

現地採用の労働者及び事務員に関する労災保険料、雇用保険料・健康保険料及び厚生年金保険料の法定の事業主負担額並びに建設業退職金共済制度に基づく事業主負担額

(チ) 福利厚生費

現地採用の事務員に係る慰安娯楽,貸与被服,医療,慶弔見舞い等福利厚生,文化活動等に要する費用

(リ) 安全訓練等に要する費用

現地における安全・衛生に要する費用及び研修訓練等に要する費用

(ヌ) 保険料

自動車保険(機械器具等損料に計上された保険料は除く),工事保険,組立保険,法定外の労災保険,火災保険,その他の損害保険の保険料

(ル) 租税公課

固定資産税、自動車税、軽自動車税等の租税公課。ただし、機械経費の機械器具等損料に計上された租税公課は除く。

(ヲ) 補償費

工事施工に伴って通常発生する物件等の毀損の補修費及び騒音,振動,濁水,交通等による事業損失に係る補修費。ただし,臨時にして巨額なものは除く。

(ワ) 据付外注経費

据付工事を専門工事業者等に外注する場合に必要となる経費

(カ) 工事登録費

工事実績の登録等に要する費用

- (ヨ) 公共工事機械設備労務者賃金実態調査に要する費用
- (タ) 雑費

(イ)から(ヨ)までに属さない諸費用

(3) 据付間接費

据付工事部門等を管理運営するために要する費用である。

(イ) 間接工・管理業務者の給料手当及び機械設備据付工の退職金等

据付工事部門等の間接工・管理業務に従事した従業員(現場代理人を含む)に支払われる基準 内給与,通勤手当,諸手当,賞与,退職金及び退職給与引当金繰入額,並びに機械設備据付工に 支払われる退職金及び退職給与引当金繰入額

(口) 事務用品費

据付工事部門等の事務用消耗品,新聞,参考図書等の購入費

(ハ) 交通通信費

据付工事部門等の従業員の通信費、交通費及び旅費

(ニ) 会議費

据付工事部門等の会議に要する費用

(ホ) 交際費

据付工事部門等の来客等の応対に要する費用

(へ) 法定福利費

据付工事部門等の従業員に関する労災保険料、雇用保険料・健康保険料及び厚生年金保険料の 法定の事業主負担額

(ト) 福利厚生費

据付工事部門等の従業員に係る慰安娯楽,貸与被服,医療,慶弔見舞い等福利厚生,文化活動等に要する費用

(チ) 動力用水光熱費

据付工事部門等の電気料、水道料、ガス料、重油等の燃料費等に要する費用

(リ) 印刷製本費

据付工事部門等の資料のコピー,写真,印刷製本等に要する費用

(ヌ) 教育訓練費

据付工事部門等の技能養成, 啓発, 資格取得, 安全訓練等に要する費用

(ル) 地代家賃

据付工事部門等の土地、建物等の借地借家料に要する費用

(ヲ) 保険料

据付工事部門等の建物、機械、自動車等の損害保険料、火災保険に要する費用

(ワ) 租税公課

固定資産税、自動車税、軽自動車税等の租税公課。ただし、機械経費の機械器具等損料に計上された租税公課は除く。

(カ) 雑費

(イ)から(ワ)までに属さない諸費用

3 設計技術費

(イ) システム設計に係る従業員並びに間接工の給料手当等

製作品・機器の製造設計以外のシステム設計等に直接従事した従業員並びに間接工の基準内給 与,通勤手当, 諸手当, 賞与,退職金及び退職給与引当金繰入額。

(ロ) システム設計に係る管理費等

システム設計等に関して設計部門を管理運営するために要する備品,消耗品,事務用品費,維持修繕費,通信交通費,会議費,交際費,法定福利費,福利厚生費,動力用水光熱費,印刷製本費,教育訓練費,雑費等の費用である。

(ハ) 設計技術費 (システム設計に係る費用) と、製作原価における間接労務費及び工場管理費で計上する製造 (製作) 設計に係る費用の区分は次表のとおりとする。

	システム設計に係る費用	製造(製作)設計に係る費用
設計計算書	 ・発注設計図書の確認 ・最適設計,細部計画等の立案 ・設計計算書の作成 (開閉荷重等) ・実施仕様書,全体取扱説明書の作成 ・設計に関する打合せ資料の作成 ・機器単体品の注文仕様書の作成 ・他工事(土木・建築等)との取合確認等の資料作成 	・確定仕様に基づく製作品の設計及び検討・製作品の強度計算書等の作成・製作品の詳細数量表の作成・製作品の詳細数量表の作成・製作品に組込む材料・部品の注文仕様書の作成・鋳鍛鋼部品の製作に必要な材料手配資料の作成
設計図面関係	・工事全体及び構成機器の完成状態を示す図面の作成(全体図、組立図等) ・フローシート ・システムシーケンス図の作成 ・機器単体品の注文図面の作成 ・据付工事図面(基礎図、配管配線図等) ・他工事(土木・建築等)との取合い確認等に必要な図面の作成	・工場で製作するために直接必要な各種詳細図の作成(部分詳細図,製作図面)・製作品に組込む部品等の注文図書の作成
	設計技術費で計上	間接労務費・工場管理費で計上

4 一般管理費等

一般管理費等の項目及び内容は、次のとおりとする。

(1) 一般管理費

施工に当る企業の経営管理及び活動に必要な本店及び支店における経常的な費用である。

(イ) 役員報酬

取締役及び監査役に対する報酬及び役員賞与金(損金算入分)

(口) 従業員給料手当等

本店及び支店の従業員に対する給料、諸手当及び賞与

(ハ) 退職金

退職給与引当金繰入額並びに退職給与引当金の対象とならない役員及び従業員に対する退職金

(二) 事務用品費

事務用消耗品費、固定資産に計上しない事務用備品費、新聞、参考図書等の購入費

(ホ) 修繕維持費

建物,機械,装置等の修繕維持費,倉庫物品の管理費等

(へ) 通信交通費

通信,交通費及び旅費

(ト) 交際費

本店及び支店などへの来客等の応対に要する費用

(チ) 法定福利費

本店及び支店の従業員に関する労災保険料、雇用保険料・健康保険料及び厚生年金保険料の法 定の事業主負担額

(リ) 福利厚生費

本店及び支店の従業員に係る慰安娯楽,貸与被服,医療,慶弔見舞い等福利厚生,文化活動等 に要する費用

(ヌ) 動力・用水光熱費

電力,水道,ガス,薪炭等の費用

(ル) 調査研究費

技術研究, 開発等の費用

(ヲ) 広告宣伝費

広告,公告,宣伝に要する費用

- (ワ) 寄付金
- (カ) 試験研究費償却

新製品又は新技術の研究のため特別に支出した費用の償却額

(ヨ) 開発費償却

新技術又は新経営組織の採用、資源の開発、市場の開拓のため特別に支出した費用の償却額

(タ) 地代家賃

事務所,寮・社宅等の借地借家料

(レ) 保険料

火災保険及びその他の損害保険料

(ソ) 租税公課

不動産取得税、固定資産税等の租税及び道路占用料、その他の公課

(ツ) 減価償却費

建物, 車両, 機械装置・事務用備品等の減価償却額

(ネ) 契約保証費

契約の保証に必要な費用

(ナ) 雑費

電算等経費、社内打合わせ等の費用、学会及び協会活動等諸団体会費等の費用

(2) 付加利益

施工に当る企業が継続して経営するために必要な費用である。

- (イ) 法人税,都道府県民税,市町村民税等
- (口) 株主配当金
- (ハ) 役員賞与(損金算入分を除く)
- (ニ) 内部留保金
- (ホ) 支払利息割引料,支払保証料その他の営業外費用

5 消費税等相当額

消費税等相当額は、消費税及び地方消費税相当分の費用である。

⑤ 請負工事費の積算

1 製作原価

工場製作に係る各費目の積算は、次のとおりとする。

- 1-1 直接製作費
 - (1) 材料費
 - 1) 直接材料費
 - (イ) 直接材料費の積算は、(所要量) × (単価) とする。
 - (ロ) 所要量の算定は積上げによるものとする。ただし、鋼材、ボルト、ナット、リベット等で 実績等により標準数量の明らかなものはそれによるものとする。

なお、積上げによる鋼材等の所要量は、製品質量とし、原則としてネット質量の積上げとするがボルト穴、リベット穴、スカラップ、ウインチドラムのロープ溝、ネジ溝等は、グロス質量の積上げとする。

- (ハ) 単価は、次のとおりとする。
 - a 鋼材の単価は、「(ベース価格+エキストラ料) \times (1+材料割増率) (スクラップ単価 \times 材料割増率 \times 0.7)」により算定するものとする。
 - b エキストラ料は, 規格エキストラ, 寸法エキストラを必要に応じ加算するものとする。
 - c 材料割増率は、表-1・1によるものとする。
 - d スクラップ単価は原則として、表 $-1 \cdot 2$ 「スクラップの該当品目」の区分による単価を適用する。
 - e 鋳造品のベース価格は、鋳放し単価を採用するものとする。なお、木型費は汎用なものについては鋳放し単価に含めるが、特殊なものについては、「直接経費」として別途計上するものとする。
 - f 鍛鋼品は、打放し(鋳造後)の単価を採用するものとする。
- 2) 補助材料費
 - (イ) 補助材料費の積算は、(補助材料費対象額)×(補助材料費率)とする。
 - (ロ) 補助材料費率は、各章で定めた率による。

(補助材料の内訳)

接着材料,溶接材,ハンダ,酸素,アセチレンガス,油脂類(潤滑油,作動油を除く),補修材,くぎ等である。ただし,鋳造に必要なコークス,石灰石,重油等は含まない。

- (2) 機器単体費
 - 1) 機器単体費の積算は、(所要量) × (単価) とする。
 - 2) 所要量の算定は積上げによるものとする。
- (3) 労務費
 - 1) 労務費の積算は、(工数)×(賃金)とする。
 - 2) 工数は、各章で定めた値によるものとする。
 - 3) 機械設備製作工の1日当りの標準賃金は、大臣官房参事官(イノベーション)が別に定めるものとする。
- (4) 塗装費
 - 1) 塗装費の積算は、(塗装面積) × (1m² 当りの単価) とする。 ただし、実績等により塗装費の明らかなものはこれによってもよいものとする。
 - 2) 塗装面積の算定は、積上げによるものとする。 ただし、実績等により塗装面積の明らかなものはこれによってもよいものとする。
 - 3) 溶融亜鉛メッキ・ステンレス鋼酸洗費等防食に伴う費用は、塗装費として計上する。

(5) 直接経費

1) 個々の費目別に見積書,実績価格等の資料により決定するものとする。

1-2 間接製作費

- (1) 間接労務費
 - 1) 間接労務費の積算は、(間接労務費対象額) × (間接労務費率) とする。
 - 2) 間接労務費対象額は,直接製作費中の労務費とする。
 - 3) 間接労務費率は、表-1・3によるものとする。
 - 4) 複数工種を一括発注する場合の間接労務費率は、原則として工種区分毎の率を適用するものとする。

(2) 工場管理費

- 1) 工場管理費の積算は、(工場管理費対象額) × (工場管理費率) とする。
- 2) 工場管理費対象額は、「純製作費」から「材料費」「機器単体費」を除いた額とする。
- 3) 純製作費は、「直接製作費」「間接労務費」の合計額である。
- 払い 工場管理費率は、表−1・4によるものとする。
- 5) 複数工種を一括発注する場合の工場管理費率は、原則として工種区分毎の率を適用するものとする。

2 据付工事原価

据付けに係る各費目の積算は、次のとおりとする。

2-1 直接工事費

- (1) 輸送費
 - 1) 輸送費の積算は、表-1・5による。なお、これにより難い場合は別途積み上げる。
 - 2) 輸送費算定時の出発地は、当該工事における入札参加業者等のうち、輸送距離が最も近い製作所在地とする。
 - 3) 継続的工事における随意契約又は変更契約等の場合の輸送起点は、前回契約又は元契約と同一とする。

(2) 材料費

- 1) 直接材料費
 - (イ) 直接材料費の積算は、(所要量) × (単価) とする。
 - (ロ) 所要量の算定は積上げによるものとする。ただし、ボルト、ナット、リベット等で実績等により標準数量の明らかなものはそれによるものとする。

(直接材料の内訳)

据付用鋼材, 電線, 電線管, 鋼管, 鋼管等

- 2) 補助材料費
 - (イ) 補助材料費の積算は、(補助材料費対象額) × (補助材料費率) とする。
 - (ロ) 補助材料費率は、各章で定めた率による。

(補助材料の内訳)

接着材料、溶接材、ハンダ、酸素、アセチレンガス、くぎ等

(3) 労務費

- 1) 労務費の積算は、(工数) × (賃金) とする。
- 2) 工数は各章で定めた値によるものとする。
- 3) 機械設備据付工の1日当りの標準賃金は、大臣官房参事官(イノベーション)が別に定めるものとする。
- 4) 機械設備据付工以外の労務費は、「公共工事設計労務単価」による。
- 5) 各賃金は、次の各項の補正を行うものとする。

(イ) 積雪寒冷地(豪雪地帯対策特別措置法「昭和37年法律第73号」第2条第1項)に定められた地域)における冬期屋外施工については、据付歩掛等の補正として、労務単価を補正する。

(4) 塗装費

- 1) 塗装費の積算は、(塗装面積) × (lm² 当りの単価) とする。 ただし、実績等により塗装費が明らかなものはこれによってもよいものとする。
- 2) 塗装面積の算定は、積上げによるものとする。 ただし、実績等により塗装面積が明らかなものはこれによってもよいものとする。
- 3) ステンレス鋼酸洗費等防食に伴う費用は、塗装費として計上する。

(5) 直接経費

- 1) 個々の費目別に見積書,実績価格,標準料金などの資料により決定するものとする。 なお,機械経費は「請負工事機械経費積算要領」又は「建設機械等賃料積算基準」等によるも のとする。
- 2) 機械経費として計上するトラッククレーン,空気圧縮機,発動発電機の経費は,「建設機械等賃料積算基準」によることを標準とする。

(6) 仮設費

現場条件等を適確に把握することにより必要額を適正に積上げるものとする。

なお、積上げ計上した場合は特記仕様書に明示するものとする。

また、別途工事と並行作業となるような場合は、必要に応じてその区分を特記仕様書に明示し重 複計上のないようにするものとする。

- a 交通誘導警備員及び機械の誘導員等の交通管理に要する費用
- b その他, 現場条件等により積上げを要する費用

2-2 間接工事費

- (1) 共通仮設費
 - (イ) 共通仮設費の積算は、(共通仮設費対象額) × (共通仮設費率) + (積上げによる費用) とする。
 - (ロ) 共通仮設費対象額は、「直接工事費」「事業損失防止施設費」「(無償貸付機械等評価額+支給 品費)」「準備費に含まれる処分費」の合計額とする。
 - (ハ) 直接工事費とは、据付工事原価中の「輸送費」「材料費」「労務費」「塗装費」「直接経費」「仮 設費」の合計額とする。
 - (二) 無償貸付機械等評価額及び支給品費は、「直接工事費」「事業損失防止施設費」に含まれるものを対象とする。
 - (ホ) 共通仮設費率は、表 $-1\cdot6$ によるものとする。
 - (へ) 複数工種を一括発注する場合の共通仮設費率は、原則として主たる工種区分の率を適用するものとする。

なお、主たる工種区分とは、共通仮設費対象額が大きい方の工種区分をいう。

- (ト) 施工地域を考慮した共通仮設費率の補正及び計算
 - a 次表の適用条件に該当する場合,施工地域を考慮した共通仮設費率の補正は,表-1・6の共通仮設費率に次表の補正係数を乗じるものとする。

なお,施工地域補正後の共通仮設費率は,小数第3位を四捨五入して,第2位とする。

地域補正の適用

	補正	適用		
施工地域区分	工種区分	対象	係数	優先
一般交通影響有り (1)	全ての工種(注1)	2 車線以上(片側1 車線以上)かつ交通量が5,000台/日以上の車道において規制を行う場合。ただし、常時全面通行止めの場合は対象外とする。	1.3	1
一般交通影響有り (2)	全ての工種(注1)	一般交通影響有り(1)以外の車道において,規制を伴 う場合。(常時全面通行止めの場合を含む。)	1.2	2
市街地 (DID 補正)	全ての工種(注1)	市街地部が施工箇所に含まれる場合。	1.2	3
山間僻地及び離島	全ての工種(注1)	人事院規則における特地勤務手当を支給するために 指定した地区,及びこれに準ずる地区の場合。	1.3	4

- (注) 1. コンクリートダム及びフィルダム工事は適用しない。
 - 2. 施工地域区分は以下のとおりとする。
 - · 市 街 地:

施工地域が人口集中地区(DID地区)及びこれに準ずる地区をいう。

なお、DID 地区とは、総務省統計局国勢調査による地域別人口密度が 4,000 人/km²以上でその全体が 5,000 人以上となっている地域をいう。

b 適用条件の複数に該当する場合の取扱い

適用条件の複数に該当する場合は、適用優先順に従い決定するものとする。

c その他

設計変更時における共通仮設費率の補正については、工事区間の延長等により当初計上した 補正値に増減が生じた場合、あるいは当初計上していなかったが、上記条件の変更により補正 出来ることとなった場合は設計変更の対象として処理するものとする。

(チ) 共通仮設費(率分)の計算

共通仮設費 (率分) =対象額 (P) ×共通仮設費率 (Kr) ×施工地域を考慮した補正係数 ただし、共通仮設費率は、表-1・6 による。

なお、補正係数を乗じる場合は、共通仮設費率 (Kr) の端数処理後に係数を乗じて、小数第 3 位を四捨五入して、第 2 位とする。

1) 運搬費

- (イ) 共通仮設費率に含まれる運搬費は、次のとおりとする。
 - a 建設機械の自走による運搬(油圧伸縮ジブ型80t以上は、積み上げるものとする。)
 - b 質量 20t 未満の建設機械の搬入、搬出及び現場内小運搬(分解・組立を含む。)
 - c 質量 20t 以上の建設機械の現場内小運搬 ただし、特殊な現場条件等により分解・組立を必要とする場合は別途加算出来るものと する。
 - d トラッククレーン (油圧伸縮ジブ型 20~50t 吊)・ラフテレーンクレーン (油圧伸縮ジブ型 20~70t 吊) の分解・組立及び輸送に要する費用
 - e 建設機械等(重建設機械を含む)の日々回送(分解・組立,輸送)に要する費用
 - f 機材等(型枠材,支保材,足場材,敷鉄板(敷鉄板設置撤去工で積上げた分は除く),トレミー管等)の搬入,搬出及び現場内小運搬
- (ロ) 積上げ積算による運搬費は、次のとおりとし、工事施工上必要なものを適正に積上げるものとする。
 - a 質量 20t 以上の建設機械の貨物自動車等による運搬 ただし、建設機械の日々回送の場合は、共通仮設費率に含む。
 - b 仮設材等(鋼矢板, H形鋼, 覆工板, 敷鉄板等)の運搬 ただし, 敷鉄板については敷鉄板設置撤去工で積上げた敷鉄板を対象とする。
 - c 重建設機械の分解,組立及び輸送に要する費用 ただし、トラッククレーン (油圧伸縮ジブ型 20~50t 吊)・ラフテレーンクレーン (油圧 伸縮ジブ型 20~70t 吊)を除く。
 - d 賃料適用のトラッククレーン (油圧伸縮ジブ型 80t 吊以上) 及びクローラクレーン (油圧 駆動式ウインチ・ラチスジブ型 35t 吊以上) の分解組立時にかかる本体賃料及び運搬中の 本体賃料
 - e 上記以外の質量 20t 以上の建設機械の損料適用機械の運搬中の本体損料
 - f その他,工事施工上必要な建設機械器具の運搬等に要する費用
 - g 上記(イ)及び(ロ) a~f における自動車航送船使用料に要する費用(運搬中の本体賃料・ 損料を含む。)

2) 準備費

- (イ) 共通仮設費率に含まれる準備費は、次のとおりとする。
 - a 工事着手前の基準点測定量等や工事着手時の準備費用
 - b 完成時の後片付け費用
- (ロ) 据付工数に含まれているものは、次のとおりとする。 施工期間中における準備、後片付け費用
- (ハ) 積上げ積算による準備費は、次のとおりとする。 伐開、除根、除草、整地、段切り、すり付け等に要する費用。この場合は特記仕様書に明 示し積上げ積算するものとする。
- 3) 事業損失防止施設費

現場条件等を適確に把握することにより必要額を適正に積上げるものとする。

- a 工事施工に伴って発生する騒音,振動,地盤沈下,地下水の断絶等に起因する事業損失を 未然に防止するための仮施設の設置費,撤去費及び当該仮施設の維持管理等に要する費用
- b 事業損失を未然に防止するために必要な調査等に要する費用

4) 安全費

- (イ) 共通仮設費率に含まれる安全費は、次のとおりとする。
 - a 工事地域内全般の安全管理上の監視,あるいは連絡等に要する費用

- b 不稼働日の保安要員等の費用
- c 安全用品等の費用
- d 安全委員会等に要する費用
- e 標示板,標識,保安燈,防護柵,バリケード,架空線等事故防止対策簡易ゲート,照明等 の安全施設類の設置,撤去,補修に要する費用及び使用期間中の損料
- (ロ) 積上げ積算による安全費は次のとおりとし、現場条件等を適確に把握することにより必要額を適正に積上げるものとする。

なお、積上げ計上した場合は特記仕様書に明示するものとする。

- a 鉄道等に近接した工事現場における出入口等に配置する安全管理要員等に要する費用
- b 夜間作業を行う場合における照明に要する費用
- c 酸素欠乏症の予防に要する費用
- d 河川、海岸工事等における救命艇に要する費用
- e 粉塵作業の予防に要する費用
- f 高圧作業の予防に要する費用
- g 長大トンネル等における防火安全対策に要する費用(工事用連絡設備含む)
- h バリケード, 転落防止柵, 照明, 工事標識等の美装化に要する費用
- i その他、現場条件等により積上げを要する費用

5) 役務費

現場条件を適確に把握することにより必要額を適正に積上げるものとする。

- a 土地の借上げ等に要する費用
- b 電力、用水等の基本料
- c 電力設備用工事負担金

6) 技術管理費

- (イ) 共通仮設費率に含まれる技術管理費は、次のとおりとする。
 - a 据付けにおいて施工管理に必要な試験に要する費用
 - b 据付けにおける出来形管理のための測量,計測,図面作成に要する費用
 - c 据付けにおける品質管理のための資料の作成に要する費用
 - d 据付けにおける工程,出来形,品質管理の確認等に必要な写真管理に要する費用
 - e 据付けにおける工程管理のための資料の作成等に要する費用
 - f 現場据付試運転報告書等の作成に要する費用
 - g 据付けにおける完成図書等の作成に要する費用
 - h 据付けにおける塗装膜厚施工管理に要する費用
 - i 据付けにおける施工管理で使用する OA 機器の費用
 - j 品質証明に係る費用(品質証明費)
 - k 情報共有システムに係る費用(登録料及び利用料)
- (ロ) 積上げ積算による技術管理費は次のとおりとし、必要額を適正に積上げるものとする。 なお、積上げ計上した場合は特記仕様書に明示するものとする。
 - a マイクロフィルムの作成に要する費用
 - b 施工管理項目以外の試験等特別な品質管理に要する費用
 - c 施工実態調査及び諸経費動向調査に要する費用 調査に要する費用とし、その費用については、設計技術費のみ非対象とする。
 - d その他,現場条件等により積上げを要する費用
 - e 上記以外に特に技術的判断に必要な資料の作成に要する費用

7) 営繕費

(イ) 共通仮設費率に含まれる営繕費は、次のとおりとする。

- a 現場事務所等の営繕(設置,撤去,維持・補修)に要する費用
- b 労働者宿舎の営繕(設置,撤去,維持・補修)に要する費用又は,労働者が旅館等に宿泊 した場合の宿泊に要する費用
- c 倉庫及び材料保管場の営繕(設置,撤去,維持・補修)に要する費用
- d 営繕費に係る土地・建物の借上げに要する費用
- e 労働者の輸送に要する費用
- (ロ) 積上げ積算による営繕費は次のとおりとし、必要額を適正に積上げるものとする。 なお、積上げ計上した場合は特記仕様書に明示するものとする。
 - a 監督員詰所の営繕(設置,撤去,維持・補修)に要する費用
 - b 特別に必要な製作品の現場における保管倉庫の営繕(設置,撤去,維持・補修)に要する 費用
 - c 現場事務所,監督員詰所等の美装化,シャワーの設置,トイレの水洗化等に要する費用
 - d 工事施工上,必要な営繕等に要する費用

(2) 現場管理費

- 1) 現場管理費の積算は、(現場管理費対象額) × (現場管理費率) とする。
- 2) 現場管理費対象額は、「純工事費」「(無償貸付機械等評価額+支給品費)」の合計額とする。
- 3) 純工事費とは、「直接工事費」「共通仮設費」の合計額とする。
- 4) 無償貸付機械等評価額及び支給品費は、「直接工事費」「事業損失防止施設費」に含まれるものを対象とする。
- 5) 現場管理費率は、表-1・7のとおりとする。
- 6) 複数工種を一括発注する場合の現場管理費は、原則として主たる工種区分の率を適用するものとする。

なお、主たる工種区分とは、現場管理費対象額が大きい方の工種区分をいう。

- 7) 施工地域を考慮した現場管理費率の補正及び計算
 - a 次表の適用条件に該当する場合,施工地域を考慮した現場管理費率の補正は,表-1・7の現場管理費率に次表の補正係数を乗じるものとする。

なお,施工地域補正後の現場管理費率は、小数第3位を四捨五入して、第2位とする。

地域補正の適用

	補正	適用		
施工地域区分	工種区分	工種区分		優先
一般交通影響有り (1)	全ての工種(注1)	2 車線以上(片側 1 車線以上)かつ交通量が 5,000 台/日以上の車道において規制を行う場合。ただし、 常時全面通行止めの場合は対象外とする。	1. 1	1
一般交通影響有り (2)	全ての工種(注1)	一般交通影響有り(1)以外の車道において,規制を伴う場合。(常時全面通行止めの場合を含む。)	1. 1	2
市街地 (DID 補正)	全ての工種(注1)	市街地部が施工箇所に含まれる場合。	1.1	3
山間僻地及び離島	全ての工種(注1)	人事院規則における特地勤務手当を支給するために 指定した地区,及びこれに準ずる地区の場合。	1.0	4

- (注) 1. コンクリートダム及びフィルダム工事は適用しない。
 - 2. 施工地域区分は以下のとおりとする。
 - •市 街 地:

施工地域が人口集中地区(DID地区)及びこれに準ずる地区をいう。

なお, DID 地区とは,総務省統計局国勢調査による地域別人口密度が 4,000 人/km²以上でその全体が 5,000 人以上となっている地域をいう。

b 適用条件の複数に該当する場合の取扱い

適用条件の複数に該当する場合は、適用優先順に従い決定するものとする。

c その他

設計変更時における現場管理費率の補正については、工事区間の延長等により当初計上した 補正値に増減が生じた場合、あるいは当初計上していなかったが、上記条件の変更により補正 出来ることとなった場合は設計変更の対象として処理するものとする。

8) 現場管理費の計算

共通仮設費=対象額 (P) ×現場管理費率 (Jo) ×施工地域を考慮した補正係数 ただし、現場管理費率は、表-1·7による。

なお、補正係数を乗じる場合は、現場管理費率 (Jo) の端数処理後に係数を乗じて、小数第 3 位を四捨五入して、第 2 位とする。

(3) 据付間接費

- 1) 据付間接費の積算は、(据付間接費対象額) × (据付間接費率) とする。
- 2) 据付間接費対象額とは、直接工事費中の労務費のうち「機械設備据付工労務費」のみを対象とする。

なお、機械設備据付工労務費は積雪寒冷地補正、夜間割増等を含んだ価格とする。

- 3) 据付間接費率は、表 $-1 \cdot 8$ のとおりとする。
- 4) 複数工種を一括発注する場合の据付間接費は、原則として主たる工種区分の率を適用するものとする。

なお、主たる工種区分とは、据付間接費対象額が大きい方の工種区分をいう。

また、鋼製付属設備の率は鋼製付属設備単独工事の場合に適用する。

3 設計技術費

- (1) 設計技術費の積算は、(設計技術費対象額) × (設計技術費率) とする。
- (2) 設計技術費対象額は、「製作原価」「据付工事原価」の合計額とする。
- (3) 標準設計技術費率は、表 $-1\cdot9$ によるものとする。
- (4) 詳細設計付き施工発注方式の場合も、表-1・9の標準設計技術費率によるものとする。
- (5) 複数工種を一括発注する場合の設計技術費は、原則として主たる工種区分の率を適用するものとする。

なお、主たる工種区分とは、設計技術費対象額が大きい方の工種区分をいう。

また,鋼製付属設備の率は,鋼製付属設備単独工事の場合に適用する。

4 一般管理費等

- (1) 一般管理費等の積算は、(工事原価)×(一般管理費等率)とする。
- (2) 一般管理費等率は、次式により算定した値とする。
 - 一般管理費等率=(標準一般管理費等率)×(前払金支出割合補正係数)

×(機器単体費補正係数)

- 1) 標準一般管理費等率は、表-1・10によるものとする。
- 2) 前払金支出割合補正係数は、表-1・11による。
- 3) 機器単体費補正係数は、表-1・12による。
- 4) 契約保証に係る費用は、別途積算する。

5 消費税等相当額

消費税等相当額は、工事価格に消費税及び地方消費税の税率を乗じて得た額とする。

6 材料等の価格等の取扱い

工事価格に係る各費目の積算に使用する材料等の価格等は、消費税等相当額を含まないものとする。

7 支給品の取扱い

- (1) 支給品とは設備の製作、据付けに際して別途契約により取得した直接材料、電力、機器単体品、 製作品等を受注者に支給するものをいう。
- (2) 支給品の現場管理費に対する取扱いは、次のとおりとする。
 - 1) 直接材料,電力(ダム関係を除く)は、全額を現場管理費算定の対象とする。
 - 2) 機器単体品費及び製作品等は、現場管理費算定の対象としない。
- (3) 支給品は一般管理費等の算定の対象としない。

8 「処分費等」の取扱い

「処分費等」とは、下記のものとし、「処分費等」を含む工事の積算は、当該処分費等を直接工事費に 計上し、間接工事費等の積算は次表のとおりとする。

- 1) 処分費(再資源化施設の受入費を含む)
- 2) 上下水道料金
- 3) 有料道路利用料

区分	処分費等が「共通仮設費対象額(P)」の 3% 以下でかつ処分費等が3千万円以下の場合	処分費等が「共通仮設費対象額(P)」の3% を超える場合又は処分費等が3千万円を超 える場合
共通仮設費		処分費等は「共通仮設費対象額(P)」の3%
現場管理費	全額を率計算の対象とする。	の金額を率計算の対象とし、3%を超える金額は、率計算の対象としない。ただし、対象
一般管理費等		となる金額は3千万円を上限とする。

- (注) 1. 上表の処分費等は、準備費に含まれる処分費を含むものとする。 なお, 準備費に含まれる処分費は伐開, 除根等に伴うものである。
 - 2. 設計技術費については、処分費等を率計算の対象としない。
 - 3. 上表により難い場合は別途考慮するものとする。

9 間接労務費、工場管理費の項目別対象表

	ij	Į		目			間接労務費	工場管理費
材			料			費	×	×
機	器		単	Ø	Ż	費	×	×
労			務			費	0	0
途			装			費	×	0
直	接	Ė		経		費	×	0
輸			送			費	×	×
間が	妾	間	接	労	務	費	ı	0
製作費	費	エ	場	管	理	費	×	
		直	接		材	料	×	×
	合	電				力	×	×
	費	機	器	単	体	品	×	×
	-	製		作		品	×	×

○:対象とする ×:対象としない

10 共通仮設費,現場管理費の項目別対象表

:	項 目	共通仮設費	現場管理費
輸	送費	0	0
材	料費	0	0
労	務費	0	0
途	装費	0	0
直	接 経 費	0	0
仮	設費	0	0
	共 通 仮 設 費	_	0
間接	事業損失防止施設費	0	0
工事費	据付間接費	_	×
	現場管理費	_	_
	直 接 材 料	0	0
支 給	電力	0*1	O*1
品 費	機器単体品	×	×
	製 作 品	×	×
無償貸	付機械等評価額	0	0

○:対象とする ×:対象としない *1:ダム関係は除く

11 設計技術費,一般管理費等の項目別対象表

		項			目			設計技術費	一般管理費等
	材			料			費	0	0
	機	1	器	単	体		費	0	○*2
製	労			務			費	0	0
作原	塗			装			費	0	0
価	直		接		経		費	0	0
	間	接	間	接	労	務	費	0	0
	製	作費	エ	場	管	理	費	0	0
	輸			送			費	0	0
	材			料			費	0	0
	労			務			費	0	0
据付	塗			装			費	0	0
エ	直		接		経		費	0	0
事原	仮			設			費	0	0
価	HH.	Tr4-	共	通	仮	設	費	0	0
	間工	接事費	据	付	間	接	費	0	0
			現	場	管	理	費	0	0
	無	償 貸	计付	機械	等	評価	額	×	×
設		計		技	徘	Ť	費	_	0
支	直		接		材		料	0	×
給	電						力	×	×
品費	機	1	器	単		体	品	×	×
	製			作			品	×	×

○:対象とする ×:対象としない *2:補正あり

			(707
材 料 名	割増率	備	考
鋼板・ステンレスクラッド鋼板	12		
ス テ ン レ ス 鋼 板	12		
銅板	25		
形 鋼 ・ 平 鋼 ステンレス平鋼, ステンレス形鋼	10		
棒 ステンレス棒鋼などの棒材・丸鋼	20	鉄筋・PC 鋼線は含まない	
鋼 管 , 銅 管 な ど の 管 材	10		
炭素鋼	15	ポンプ主軸に適用	
鋳 鉄	20		
"	10	ポンプケーシング吸吐出管	に適用
鋳	30		
"	20	ポンプ羽根車に適用	
ス テ ン レ ス 鋳 鋼	20	ポンプ羽根車に適用	
銅 合 金 鋳 物	40		
"	20	ポンプ羽根車に適用	
鍛	30		
アルミニウム合金鋳物	20	換気設備のファンロータに	適用
アルミニウム合金 板材	12		
アルミニウム合金 形材・管材	10		

(注) ステンレス鋼板で、中・大形水門、堰及びダム用水門設備等の戸当り金物のように機械加工を伴う場合の材料割増率は25%とする。

表-1・2 スクラップの該当品目

	ŧ	才		*	타		名		スクラップの該当品目
鋼材	<u> </u>	ス	テン	ノレ	スク	クラ	ツ	ド鋼板	ヘビーH 1
スステ	-							銅 板ス形鋼	ステンレス鋼板:ステンレス新断 銅 板:銅くず(並)
形		鋼			•		平	鋼	ヘビーH 1
棒鉧	•	丸鉧	1,	ステ	ンレ	ノスフ	棒 鋼	・丸鋼	普 通 棒 鋼 ・ 丸 鋼:鋼ダライ粉 A ステンレス鋼棒・丸鋼: ステンレス新断
鋼	管	,	銅	管	な	ど	Ø	管材	鋼管:ヘビーH1 銅管:銅くず(並)
鋳								鉄	銑ダライ粉 A
鋳								鋼	鋼ダライ粉 A
銅		合		Ź	仓		鋳	物	黄,青銅くず,鋳物(並)
鍛								鋼	鋼ダライ粉 A
ア	ル	3	Ξ	ウ	ム	合	金	鋳 物	アルミくず,機械鋳物

(注) 表以外の材料は、別途当該材質の品目を適用する。

工 種 区 分	間接労務費率	備考
水門設備,除塵設備, ダム施工機械設備	75	水門設備のうち小形水門設備は除く
小形水門設備,消融雪設備, 鋼製付属設備	60	
揚排水ポンプ設備, トンネル換気設備	90	

表-1・4 工場管理費率

(%)

工 種 区 分	工事管理費率	備考
水門設備,除塵設備, ダム施工機械設備	20	水門設備のうち小形水門設備は除く
小形水門設備,消融雪設備, 鋼製付属設備	25	
揚排水ポンプ設備, トンネル換気設備	35	

表-1・5 新設工事輸送費(沖縄・離島を除く)

	区	分	輸送費[円]	「x」の定義
	小形水門	プレートガーダ構 造ローラゲート プレートガーダ構 造スライドゲート	$y = (17.2x+42) \times D + 212,000$	
	中	プレートガーダ構 造ローラゲート	$y = (17.8x + 146) \times D + 212,000$	扉体面積[m²/門]
河川用 水門設備	・大形式	プレートガーダ構 造角落しゲート	$y = (12.5x + 199) \times D + 212,000$	×門数
	水門,堰	シェル構造ローラ ゲート	(x×D<1,500 の場合) y=(135x-1,594)×D+51,000 (x×D≥1,500 の場合) y=(60.9x-717)×D+116,000	
	起伏堰	起伏ゲート	$y = (12.5x + 199) \times D + 212,000$	扉体面積[m²/門] ×門数
	放流	三方水密ラジアル ゲート	$y = (30.7x - 242) \times D + 1,226,000$	
	設備	四方水密ラジアル ゲート	$y = (252x - 643) \times D + 1, 226,000$	扉体面積[m²/門]
	制水	四方水密ローラ ゲート	$y = (105x+694) \times D+1, 226,000$	×門数
	設備	四方水密スライド ゲート	$y = (55.8x + 797) \times D + 1,226,000$	
ダム用 水門設備		大容量放流管	$y = (12.4x - 811) \times D + 1,226,000$	放流管体積[m³] ×条数
	放流管	大容量放流管 (整流板のみ)	$y = (6.17x - 170) \times D + 1,226,000$	面積[m²]×面数
		小容量放流管	$y = (7.42x + 28) \times D + 1,226,000$	放流管体積[m³] ×条数
	取水設	直線多段ゲート	$y = (55.5x + 922) \times D + 1,226,000$	扉体面積[m²/門] ※門数
	備	円形多段ゲート	$y = (112x-132) \times D+1, 226,000$	体積[m³]×門数

(つづく)

区	分	輸送費[円]	「x」の定義
ダム用 水門設備	小容量放流設備用 ゲート・バルブ	$y = (1.54x - 980) \times D + 63,000$	口径[mm]×門数 (適用範囲: x≧700)
ゴム引布製起伏	ゲート設備	$(x \times D < 1,500 $ の場合) $y = (17.4x + 12) \times D + 51,000$ $(x \times D \ge 1,500 $ の場合) $y = (7.80x + 5) \times D + 116,000$	扉体面積[m²/門] ×門数
	固定機場	$y = (7.70x + 805) \times D + 104,000$	ポンプ吐出量
揚排水ポンプ	水中ポンプ (φ 400 以上)	$y = (11.0x + 264) \times D + 104,000$	「m³/min]×台数
設備	水中ポンプ (φ 400 未満)	「道路排水設備」に準ずる。	
	除塵設備	$y = 53.4x \times D + 216,000$	対象設備質量[t]
ダム施工機械設	·備	$y=26.6x\times D+1, 226,000$	対象設備質量[t]
トンネル換気設備	ジェットファン・ ブースタファン	$y = (0.23x - 72) \times D + 176,000$	ファン口径[mm] ×基数 (適用範囲: x≧1,000)
トンネル非常 用施設	消火設備	$y = 73.9x \times D + 170,000$	対象設備質量[t]
	消雪設備 (散・送水管)	y=71.5x+25,000	散・送水管の延長 [m]
消融雪設備	消雪設備 (ケーシング管・ス トレーナ・揚水管)	y=348x+73,000	ケーシング管+ス トレーナ+揚水管 の延長[m]
	融雪設備	y = 337x + 24,000	融雪面積[m³]
道路排水設備 (φ 400 未満の	揚排水ポンプ含む)	$y = (0.85x + 44) \times D + 103,000$	ポンプロ径[mm] ×台数
共同溝付帯設備	Î	$y = 215x \times D + 69,000$	対象設備質量[t]
駐車場設備		$y=30.6x\times D+180,000$	対象設備質量[t]
車両重量計設備	重量計	(x×D<1,500 の場合) y=83.9x×D+51,000 (x×D≧1,500 の場合) y=37.8x×D+116,000	対象設備質量[t]
	軸重計	$y=75.1x\times D+140,000$	対象設備質量[t]
道路用昇降設備	i	$y=88.2x\times D+130,000$	対象設備質量[t]
	昇降設備 (エレベーター)	「道路用昇降設備」に準ずる。	
ダム管理設備	流木止設備 係船設備	$y=52.9x\times D+199,000$	対象設備質量[t]
遠方監視操作制	御設備	$y=89.9x\times D+98,000$	対象設備質量[t]
鋼製付属設備		$y=38.3x\times D+81,000$	対象設備質量[t]
			•

- (注) 1. 輸送費 [円] の算定式において、「x」は「xの定義」によるものとし、[D] は想定輸送 距離 [km]、「対象設備質量」は輸送品の質量[t]とする。なお、輸送費 [円] は 1,000 円未 満を切り捨てるものとする。
 - 2. 各算定式は、各章で定める構成機器すべての輸送費である。
 - 3. 揚排水ポンプ設備には、救急排水ポンプ設備は含まれないことから、別途積上げによる。
 - 4. 消融雪設備は、プレキャスト製品の輸送には適用しないものとし、別途積上げによる。
 - 5. 「鋼製付属設備」の算定式は、鋼製付属設備単独の工事及び水門等に付随する管理橋に適用するものとし、他の設備の算定式には付随する鋼製付属設備(手摺、防護柵、タラップ

17.80

表-1・6 共通仮設費率

(%)

7.60

対象額	300 万円以下	300 万円を超え 5 億円以下		5 億円を 超えるもの
適用区分	下記の率とする。	(1)の算定式より算成で数値は下記による		下記の率とする。
工種区分		A	b	
水門設備,ダム施工機械設備, ダム管理設備	19. 81	240. 90	− 0. 1675	8. 41

212.61

-0.1663

対象額	300 万円以下	300 万円を超	え 1 億円以下	1 億円を 超えるもの
適用区分	下記の率とする。	(1)の算定式より算成で数値は下記による		下記の率とする。
工種区分		A	b	
揚排水ポンプ設備(維持修繕)	25. 92	8679. 61	-0.3898	6. 61

対象額	300 万円以下	300 万円を超	え2億円以下	2 億円を 超えるもの
適用区分	下記の率とする。	(1)の算定式より算 変数値は下記による		下記の率とする。
工種区分		A	b	
道路付帯設備	24.01	762. 79	-0.2319	9.07

(1) 算定式

$Kr = A \times P^b$

揚排水ポンプ設備(新設),

除塵設備

Kr : 共通仮設費率 (%)

P : 対象額(円) A·b : 変数値

(注) Krの値は、小数第3位を四捨五入して、第2位とする。

対象額	300 万円以下	300 万円を超	え 5 億円以下	5 億円を 超えるもの
適用区分	下記の率とする。	(2)の算定式より算 変数値は下記による		下記の率とする。
工種区分		A	В	
水門設備,ダム施工機械設備, ダム管理設備	21.89	44. 73	-0.0479	17. 14
揚排水ポンプ設備, 除塵設備	24. 72	98. 08	-0.0924	15. 41

対象額	300 万円以下	300 万円を超	え2億円以下	2 億円を 超えるもの
適用区分	下記の率とする。	(2)の算定式より算に変数値は下記による		下記の率とする。
工種区分		A	b	
道路付帯設備	22.76	55. 45	-0.0597	17. 71

(2) 算定式

$Jo = A \times P^b$

Jo : 現場管理費率 (%)

P : 対象額(円) A·b : 変数値

(注) Joの値は、小数第3位を四捨五入して、第2位とする。

表-1・8 据付間接費率

(%)

		_	一人员及[[[[]]]]	(70)
	工種区分	}	据付間接費率	備考
	小田笠	新設	130	
水	水門等	維持修繕	140	
門設	.1. T/C→Z HH ⇒N, /共	新設	80	
備	小形水門設備	維持修繕	90	
VHI	ゴム引布製起伏ゲー	卜設備	90	
揚排刀	水ポンプ設備		140	
除塵記	没備		110	
ダムカ	施工機械設備		110	
車両重	ネル換気設備,トンネ/ 重量計設備,車両計測記 雪設備,駐車場設備,道	设備,	110	
道路捷	非水設備・共同溝付帯記	设備	90	
ダム管理設備 (流水止設備以外)			130	
ダム闘	監理設備 (流木止設備)		80	
鋼製作	寸属設備		65	単独工事に適用

表-1・9 標準設計技術費率

対象額	1,000 万円以下	1,000 万円を超	え 10 億円以下	10 億円を 超えるもの
適用区分	下記の率とする。	(3) の算定式より算 変数値は下記による。		下記の率とする。
工種区分		A	b	
水門設備 (小形水門設備除く)	3. 32	23. 589	−0. 1217	1.89
ゴム引布製起伏ゲート設備	4. 22	743. 22	− 0. 3209	0.96
揚排水ポンプ設備	4. 47	65. 910	−0. 1669	2.07
ダム施工機械設備	4. 28	13. 580	−0. 0717	3. 07
トンネル換気設備,駐車場設備, 道路用昇降設備	2. 77	47. 925	− 0. 1769	1. 23

対象額	対象額 500 万円以下 500 万円を超え 2 億円以下			
適用区分	下記の率とする。	(3) の算定式より算 変数値は下記による。	· · · · · · · · · · · · · · ·	下記の率とする。
工種区分		A	b	
小形水門設備	3. 68	350. 05	− 0. 2953	1. 24
除塵設備	3. 77	170. 04	− 0. 2469	1.52
ダム管理設備	3. 62	70. 164	-0. 1922	1.78
トンネル非常用施設	3. 21	43. 530	− 0. 1690	1.72
車両重量計設備, 車両計測設備	3. 55	25. 921	-0. 1289	2. 21
消融雪設備	2. 80	351. 05	-0.3131	0.88
道路排水設備・共同溝付帯設備	4. 34	40. 425	− 0. 1447	2. 54
鋼製付属設備 (単独工事に適用)	3. 68	350. 05	-0. 2953	1. 24

(3) 算定式

$Se = A \times P^b$

Se :標準設計技術費率 (%)

P : 対象額(円) A·b : 変数値

(注) Seの値は、小数第3位を四捨五入して、第2位とする。

表-1・10 標準一般管理費等率

対 象 額	標準一般管理費等率
500 万円以下	26. 17%
500 万円を超え 30 億円以下	G ₁ =-1.4357Log (C ₁) +35.789 G ₁ :標準一般管理費等率 (%) C ₁ :対象額 (円)
30 億円を超えるもの	22. 18%

(注) G₁の値は、小数第3位を四捨五入して、第2位とする。

表-1・11 前払金支出割合補正係数

前払金支出割合区分	0%から	5%を超え	15%を超え	25%を超え	35%を超え
	5%以下	15%以下	25%以下	35%以下	40%以下
補正係数	1.05	1.04	1.03	1.01	1.00

(注) なお、各機関で別途定めているところは各機関の定めによる。

表-1・12 機器単体費補正係数

 $R = 1 - \frac{K}{1.25}$

R:機器単体費補正係数(小数)

K:工事原価に占める機器単体費の比率(小数)

(注) R及びKは、小数第3位を四捨五入して、第2位とする。

基準の解説

1 製作原価

1-1 直接製作費

(1) 労務費

機械設備製作工の定義は、下記のとおりとする。

工場において機械設備の製作に従事する者で機械設備の工場製作について相当程度の技能を有し, 主として次に掲げる作業について主体的業務を行う労働者。

- a. 原寸図の作成
- b. 原材料への罫書き
- c. 原材料の切断
- d. 部材の溶接
- e. 部材の歪み等の矯正
- f. 旋盤, フライス盤等による部材の機械加工
- g. 部材及び製造物等の仕上げ加工
- h. 個々の部材等の組立及び仮組立(各種調整を含む)
- i. 電気部品の取付け, 配線
- j. 各製作工程における段取り
- k. 各製作工程における雑役

2 据付工事原価

2-1 直接工事費

- (1) 輸送費(修繕工事)
 - 1) 修繕工事の輸送費の積算は、表-1及び表-2による。なお、これにより難い場合は別途積上げる。
 - 2) 輸送費算定時の出発地は、当該工事における入札参加者等のうち、輸送距離が最も近い製作所在地とする。
 - 3) 継続的工事における随意契約又は変更契約等の場合の輸送起点は、前回契約又は元契約と同一とする。

表-1 修繕工事輸送費(沖縄・離島を除く)

本歩掛の適用範囲は, 100<x×Dとする。

	区	分	輸送費[円]	「x」の定義
河 川 用水門設備	小形水門中・大形水門,堰	プレートガーダ構造 ローラゲート プレートガーダ構造 スライドゲート プレートガーダ構造 ローラゲート プレートガーダ構造 ローラゲート シェル構造 ローラゲート	(100 <x×d<1,500 の場合=""> y=83.9x×D+51,000 (x×D≧1,500 の場合) y=37.8x×D+116,000</x×d<1,500>	
	起伏堰	起伏ゲート	投影面積 10[m²/門]以上は「中・大 形水門,堰],10[m²/門]未満は「小 形水門」に準ずる。	
ダム 用水門設備	放流設備 制水設備 放 流 管 取水設備	三方水密 ラジアルゲート 四方水密 ラジアルゲート 四方水密 ローラゲート 四方水密 スライドゲート 大容量放流管 (整流板のみ) 小容量放流管 直線多段ゲート 円形多段ゲート	y=44.8x×D+116,000	対象設備質量[t] (適用範囲: 100 <x×d)< td=""></x×d)<>
	小	容量放流設備用 ゲート・バルブ	-	
ゴム引布製起伏ゲート設備			(100 <x×d<1,500 の場合)<br="">y=83.9x×D+51,000 (x×D≧1,500 の場合) y=37.8x×D+116,000</x×d<1,500>	

区		輸送費[円]	「x」の定義
	固定機場	50.5 N.D. 107.000	
揚排水ポンプ	水中ポンプ (φ 400 以上)	$y=50.7x\times D+104,000$	
設備	水中ポンプ (φ 400 未満)	「道路排水設備」に準ずる。	
	除塵設備	$y=52.0x\times D+145,000$	
ダム施工機械設備	Ħ	「ダム用水門」,「放流設備」,「制水設備」,「放流管」,「放流管」,「取水設備」に準ずる。	
トンネル換気 設備	ジェットファン・ ブースタファン	$y=91.4x\times D+124,000$	
トンネル非常 用施設	消火設備	$y = 73.9x \times D + 170,000$	
	消雪設備 (散・送水管)		対象設備質量[t] (適用範囲: 100 <x×d)< td=""></x×d)<>
消融雪設備	消雪設備 (ケーシング管・ス トレーナ・揚水管)	_	
	融雪設備		
道路排水設備 (φ 400 未満の排	場排水ポンプ含む)	$y=84.6x\times D+103,000$	
共同溝付帯設備		$y = 215x \times D + 69,000$	
駐車場設備		_	
車両重量計設備	重量計	_	
中門里里可以佣	軸重計	$y = 75.1x \times D + 140,000$	
道路用昇降設備		_	
	昇降設備 (エレベーター)	_	
ダム管理設備	流木止設備	v=52 0v × D±100 000	
	係船設備	$y=52.9x\times D+199,000$	
遠方監視操作制御設備		$y = 22.8x \times D + 99,000$	
鋼製付属設備		$y=33.6x\times D+46,000$	

- (注) 1. 輸送費 [円] の算定式において、「x」は「xの定義」によるものとし、[D] は想定輸送距離 [km]、「対象設備質量」は輸送品の質量[t]とする。なお、輸送費 [円] は、1,000 円未満を切り捨てるものとする。
 - 2. 各算定式は、「据付製品の現場までの輸送」、「整備を行う工場への輸送」、「処分場までの輸送」を各々算出するものとする。
 - 3. $0 < x \times D \le 100$ の場合は、表 -2 により算出するものとする。
 - 4. 「鋼製付属設備」の算定式は、鋼製付属設備単独の工事に適用するものとする。
 - 5. 修繕工事で全面取替の工事の場合、「処分場までの輸送」は、表-1 及び表-2 修繕工事輸送費にて算出を行うものとするが、設置においては、表 $-1\cdot5$ 新設工事輸送費にて算出を行うものとする。
 - 6. 算定式が設定されていない工種については、別途積上げるものとする。
 - 7. 新設工事において,分割発注する場合は本歩掛を準用出来るものとする。ただし,ダム用水門設備,ダム施工機械設備,遠方監視操作制御設備は除く。

表-2 修繕工事輸送費(沖縄・離島を除く)

本歩掛の適用範囲は、0<x×D≦100とする。

区 分	輸 送 費 [円]	「x」の定義
全工種 (0 <x×d≦100の場合)< th=""><th>$y = 693x \times D + 11,352$</th><th>対象設備質量[t] (適用範囲:0<x×d≦100)< th=""></x×d≦100)<></th></x×d≦100の場合)<>	$y = 693x \times D + 11,352$	対象設備質量[t] (適用範囲:0 <x×d≦100)< th=""></x×d≦100)<>

- (注) 1. 輸送費 [円] の算定式において, $\lceil \mathbf{x} \rfloor$ は $\lceil \mathbf{x} \rceil$ の定義」によるものとし, $\lceil \mathbf{D} \rceil$ は想定輸送距離 $\lceil \mathbf{km} \rceil$, 「対象設備質量」は輸送品の質量 $\lceil \mathbf{t} \rceil$ とする。なお, 輸送費 $\lceil \mathbf{H} \rceil$ は 1,000円未満を切り捨てるものとする。
 - 2. 上記算定式は、「据付製品の現場までの輸送」、「整備を行う工場への輸送」、「処分場までの輸送」を各々算出するものとする。
 - 3. 修繕工事で全面取替の工事の場合、「処分場までの輸送」は、表-1及び表-2修繕工事輸送費にて算出を行うものとするが、設置においては、表 $-1\cdot5$ 新設工事輸送費にて算出を行うものとする。

(2) 材料費

- 1) 据付材料費の算出対象労務費は、補正前(積雪寒冷地補正、夜間割増等)の労務費とする。
- 2) 生コンクリート,電線,電線管等を土木工事あるいは,電気工事歩掛により積算する場合の材料割増及び補助材料費は当該工事歩掛による。

ただし、機械設備の据付工数に含まれる電気配線等については、据付直接材料費として計上し、 雑材料は、当該設備の補助材料費率をもって算出する。

なお、機側操作盤以降の電気配線及び配管について、各工種区分で率計上の場合は積上げ計上不要である。

(3) 直接労務費

機械設備据付工の定義は、下記のとおりとする。

現場において機械設備の据付けに従事する者で機械設備の現場据付について相当程度の技能を有し, 主として次に掲げる作業について主体的業務を行う労務者。

なお,現場代理人もしくは主任技術者(管理技術者)としての業務を行う労働者,補助的作業及び 配管・配線等に従事する現地採用の労働者, 塗装に従事する労働者は除く。

- a. 据付基準線の芯出し罫書き
- b. 据付用架台等の仮設物設置
- c. 各機器の搬入及び吊り込み・固定
- d. 部材の溶接
- e. 溶接材の歪み等の矯正
- f. 溶接部の仕上げ加工
- g. ライナー等による据付調整及びボルト等による個々の機器の固定
- h. 機器の更新, 部品交換等に伴う既設品の取外し, 現場搬出, 積込み
- i. 個々の機器等の接続及び各種調整
- j. 機械設備における総合試運転調整
- k. 各据付工程における段取り

2-2 間接工事費

(1) 共通仮設費

- 1) 鋼製付属設備を単独で発注する場合の共通仮設費率は、原則として主体となる設備の工種区分を適用するものとする。
- 2) 塗替塗装の場合は、塗装対象設備に該当する工種の率を適用する。
- 3) 河川浄化設備の共通仮設費率は、揚排水ポンプ設備の率に準ずる。

(2) 現場管理費

- 1) 鋼製付属設備を単独で発注する場合の現場管理費率は、原則として主体となる設備の工種区分を 適用するものとする。
- 2) 途替途装の場合は、途装対象設備に該当する工種の率を適用する。
- 3) 河川浄化設備の現場管理費率は、揚排水ポンプ設備の率に準ずる。
- (3) 据付間接費
 - 1) 塗替塗装の場合は、塗装対象設備に該当する工種の率を適用する。
 - 2) 河川浄化設備の据付間接費率は、揚排水ポンプ設備の率に準ずる。

3 設計技術費

- (1) 塗装工事(現場塗替え工事)は、設計技術費を計上しない。修繕工事で内容が設備の修繕の場合は、 設計技術費を計上する。
- (2) 河川浄化設備の設計技術費率は、揚排水ポンプ設備の率に準ずる。

4 一般管理費等

(1) 契約の保証に必要な費用の取扱い

前払金支出割合の相違による補正までを行った値に、表-3 の補正値を加算したものを一般管理費 等とする。

	表-3 契約保証に係る一般管理費等率の補正	(%)
	保証の方法	補正値
ケース1:	発注者が金銭的保証を必要とする場合(工場請負契約書 第4条を採用する場合)。	0.04
ケース2:	発注者が役務的保証を必要とする場合。	0.09
ケース 3:	ケース1及びケース2以外の場合。	補正しない

表一3 契約保証に係る一般管理費等率の補正

5 端数処理

- (1) 間接労務費,工場管理費の金額は、1,000円単位とし、1,000円未満は切り捨てる。
- (2) 共通仮設費の率計上の金額は、1,000円単位とし、1,000円未満は切り捨てる。
- (3) 現場管理費,据付間接費の金額は、1,000円単位とし、1,000円未満は切り捨てる。
- (4) 設計技術費の金額は、1,000円単位とし、1,000円未満は切り捨てる。

6 材料費等の価格等の取扱い

工事価格に係る各費目の積算に使用する材料等の価格は、消費税等相当額を含まないものとする。

(1) 物価資料,見積り等に掲載される価格等は,消費税込み価格,消費税抜き価格の両者があると考え られるので、消費税を含んでいる場合は、当該額に110分の100を乗じて得られた額を、消費税を含 まない価格として扱うものとする。

(2) 材料費等

材料費の価格については、設計書作成時における市場価格とし、消費税等相当分は含まないものと する。設計書に計上する材料の単位当りの価格を設計単価といい,設計単価は物価資料等を参考とし, 買取価格、買入れに要する費用及び購入場所から現地までの運賃の合計額とするものとする。

当初の支給品の価格決定については、官側において購入した資材を支給する場合、現場発生資材を 官側において保管し再使用品として支給する場合とも、設計書作成時における市場価格または、類似 品価格とする。

なお、設計単価は、「岡山県公共工事建設資材等単価決定要領」により決定する。

標準歩掛のない労務工数については、見積りをもとに決定するものとする。

また,工事の規模,工種,施工箇所及び施工条件から上記により難い場合は,事前に本庁担当課と 協議のうえ別途決定する。

7 随意契約方式により工事を発注する場合の共通仮設費、現場管理費、設計技術費及び一般管理費等の調 整

- (1) 調整対象となる工事
 - 1) 調整対象となる工事
 - イ) 現工事の施工業者と随意契約方式で発注する工事とする。

ただし、上記に該当しない場合でも仮設物(指定仮設物及び当該現場で積算工法上必然的に 仮設せざるをえない仮設物)が共用出来る場合は、その部分のみについて調整する。

ロ) 繰越, 国庫債務負担行為工事の取扱い

現工事が繰越又は国債で調整対象となる場合は、全体工事を対象として調整する。

- 2) 調整の対象となる現工事の設計金額は、当該追加工事が発注される時点のものとする。なお、追加工事の設計変更時点で現工事に設計変更があった場合は、現工事の変更後の設計金額を調整の対象とする。また、積算体系が異なる異種の工事は調整しない(仮設物が共用出来る場合はその部分のみ調整する)。
- (2) 共通仮設費の調整計算について
 - 1) 積上げ計算部分は、実態に合わせて調整する。
 - 2) 現工事と当該追加工事で工種が異なる場合は、現工事と、当該追加工事の純工事費の合計額に対するその主たる工種(それぞれ純工事費の大きい方の工種)の共通仮設費率を適用する。
 - 3) 率計算部分の調整計算の方法

現工事と当該追加工事の共通仮設費を合算したもので率を算出し、各々の共通仮設費を求め、現工事の共通仮設費を控除したものの範囲内とする。

イ) 調整の一般式は、次のとおりとする。

$A \leq (D \times \gamma_1) - B \times \gamma_2$

A : 当該追加工事の共通仮設費

B : 現工事の対象額

D:合算工事の対象額

γ₁: Dに相当する主たる工種の共通仮設費率

γ₂: Bに相当する現工事の工種の共通仮設費率

ただし、前記計算の場合にあってAが負数になる場合はゼロ円とみなし、追加工事に関する共通 仮設費は計上しない。

また、Aが当該追加工事単独で積算された所要額よりも大きい場合は当該所要額とする。

- (3) 現場管理費の調整計算の方法
 - 1) 現工事と当該追加工事の純工事費を合算したもので率を算出し、各々の現場管理費を求め、現工事の現場管理費を控除したものの範囲内とする。
 - 2) 現工事と当該追加工事で工種が異なる場合は、現工事と当該追加工事の純工事費の合計額に対するその主たる工種(それぞれ純工事費の大きい方の工種)の現場管理費率を適用する。
 - 3) 調整の一般式は、次のとおりとする。

$A \leq (D \times \beta_{1}) - B \times \beta_{2}$

A : 当該追加工事の現場管理費

B : 現工事の純工事費

D : 合算工事の対象額

 β $_1$: Dに相当する主たる工種の現場管理費率

β₂: Bに相当する現工事の工種の現場管理費率

ただし、前記計算の場合にあって、Aが負数になる場合はゼロ円とみなし、当該追加工事に関する現場管理費は計上しない。

また、Aが当該追加工事単独で積算された所要額よりも大きい場合は当該所要額とする。

(4) 設計技術費の調整計算の方法

設計技術費の積算に当っても、(3)現場管理費と同じ扱いとする。

(5) 一般管理費等の調整計算の方法

現工事と当該追加工事の工事原価を合算したもので率を算出し、各々の一般管理費を求め、現工事の一般管理費等を控除したものの範囲内とする。

$A \leq (D \times \alpha_1 \times \delta_1 \times \gamma_1) - (B \times \alpha_2 \times \delta_2 \times \gamma_2) + C \times \beta$

A : 当該追加工事の一般管理費等

B:現工事の工事原価(中止期間中の現場維持費等の費用を含む)

C : 当該追加工事の調整後の工事原価

D : 合算工事の工事原価

 α 1: Dに相当する標準一般管理費等率

α 2: Bに相当する標準一般管理費等率

β : 追加工事の契約保証に係る一般管理費等の補正値

γ 1: Dの機器単体費補正係数

γ₂: Bの機器単体費補正係数

δ 1: 前払金支出割合による補正係数

現工事と追加工事の前払金支出割合が異なる場合はBとCの加重平均による前払金 支出割合から求めた補正係数

δ : 現工事の前払金支出割合による補正係数

一般管理費等率に当該補正係数を乗じて得た率は、小数第3位を四捨五入して、第2位とする。

8 連続発注工事における工数補正

同一形状・規格・同施工現場のものを連続(同一年度内)して同一業者に随意契約方式により別途工事として発注する場合は、製作工数について必要に応じ製作数による補正(同一年度内の製作数を加えた補正)を行うものとする。

なお、据付工数については、同時期・現場、同等規模・形式の場合のみ補正するものとする。

(1) 製作工数

追加工事の製作工数=Y×(A+B)× α ₁-Y×A× α ₂

Y:標準工数(1門又は1台当り工数)

A : 前工事の数量(門又は台数)

B : 追加工事の数量

 α ₁:数量 (A+B) に対応する工数補正率

α 2:数量Aに対応する工数補正

(2) 据付工数

製作工数と同様に補正する。

9 土木工事と機械設備を一体で発注する場合

土木工事と機械設備を一体で発注する場合の機械設備工事の積算は、単独に一般管理費等まで積算し、 単純に土木工事と合算する。

なお、機械設備の積算額は、十木工事経費等の対象外とする。

- 10 旧基準で積算した工事に改定基準で積算した工事を追加する場合等の共通仮設費、現場管理費、設計技術費及び一般管理費等の調整
 - (1) 共通仮設費調整計算の一般式

 $A \leq D \times \beta_1 - B \times \beta_2$

A : 当該追加工事の共通仮設費

B : 現工事の共通仮設費対象額

D : 合算工事の共通仮設費対象額

β₁: Dに相当する改正基準による共通仮設費率

β₂: Bに相当する改正基準による共通仮設費率

(2) 現場管理費

現場管理費の積算に当っても、(1)共通仮設費と同じ扱いとする。

(3) 設計技術費

設計技術費の積算に当っても、(1)共通仮設費と同じ扱いとする。

なお,現工事の設計技術費対象額は,改正基準による設計技術費対象費目により,算出するものとする。

(4) 一般管理費等

 $\mathsf{A} \leqq (\mathsf{D} \times \alpha_{-1} \times \delta_{-1} \times \gamma_{-1}) - (\mathsf{B} \times \alpha_{-2} \times \delta_{-2} \times \gamma_{-2}) + \mathsf{C} \times \beta$

A : 当該追加工事の一般管理費等

B : 現工事の工事原価

C : 当該追加工事の調整後の工事原価

D : 合算工事の工事原価

α₁: Dに相当する改正基準による一般管理費等率

α ,: Bに相当する改正基準による一般管理費等率

β : 追加工事の契約保証に係る一般管理費等の補正値

γ₁: Dの機器単体費補正係数

γ₂: Bの機器単体費補正係数

δ 1: 当該追加工事の前払金支出割合による補正係数 現工事と追加工事の前払金支出割合が異なる場合はBとCの加重平均による前払金支出 割合から求めた補正係数

δ : 現工事の前払金支出割合による補正係数

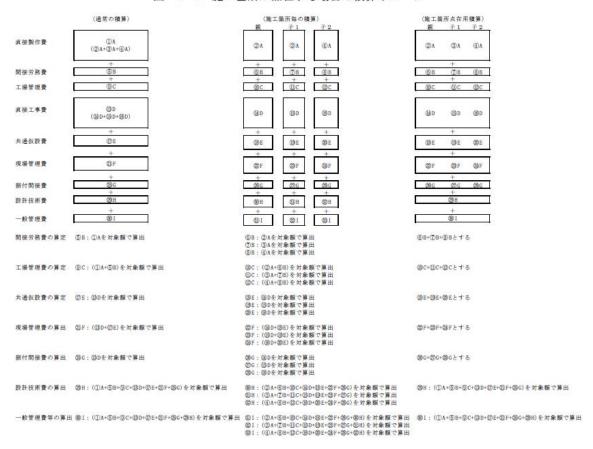
一般管理費等率に当該補正係数を乗じて得た率は、小数第3位を四捨五入して、第2位とする。

(5) 設計変更について

旧基準により積算した工事の設計変更は、旧基準により積算するものとする。

11 施工箇所が点在する工事の積算について

施工箇所が点在する工事については、建設機械を複数箇所に運搬する費用や複数箇所の交通規制等がそれぞれの箇所で発生するなど、積算額と実際かかる費用に乖離があるため、共通仮設費、現場管理費を箇所毎に算出する積算とする。


(1) 対象工事

施工箇所が複数あり、施工箇所が1km程度を超えて点在する工事を対象とする。なお、通年維持工事等、当初契約において工事場所を範囲で指定する工事は除く。ただし、これにより難い場合は個別に考慮できる。

- (2) 工事箇所の設定方法及び積算方法
 - 1) 施工規模の大きい箇所を「親設計書」とし、その他の施工箇所を「子設計書」と分類する。
 - 2) 主たる工種区分は、工事全体で判断する。(施工箇所毎に主たる工種区分を設定しない。)

- 3) 直接工事費の施工規模等の入力条件は、施工筒所毎の数量から選択する。
- 4) 労務費、材料費等単価の地区設定は、施工箇所毎に設定する。
- 5) 共通仮設費、現場管理費及び据付間接費については、施工箇所毎に算出した合計額とする。
- 6) 共通仮設費率及び現場管理費率の補正については、施工箇所毎に設定する。積上げ項目のうち、施工箇所毎に分割できない場合は、直接工事費の最も大きい施工箇所に計上する。
- 7) 設計技術費及び一般管理費等については、施工箇所毎に分けない積算(以下,「通常の積算」)と同様とする。なお、設計技術費及び一般管理費算出時の共通仮設費率及び現場管理費率にかかる施工地域を考慮した補正等は、「親設計書」で設定した係数によるものとする。
- 8) 業務委託料は、「親設計書」に計上する。

図-1・1 施工箇所が点在する場合の積算イメージ

※積算のイメージ

從 来: (A市直接工事費+B市直接工事費+C町直接工事費)×間接費率

本運用: (A地区(施工箇所 a)直接工事費×間接費率)

+ (B地区 (施工箇所 b) 直接工事費×間接費率)

+ (C地区(施工箇所 c)直接工事費×間接費率)

※設計技術費及び一般管理費等は通常どおり

第2章 水門設備

① 河川用水門設備

1 適用範囲

この基準は,河川用水門設備の製作,据付けに適用する。

1-1 区分及び構成

(1) 水門設備の区分及び構成は、表 $-2 \cdot 1$ のとおりとする。

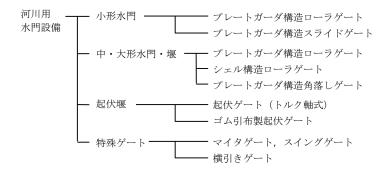

	衣一2・1 四方及び構成						
区	-	分	•		構成		
	小	形	水	門	扉体、戸当り、開閉装置、操作制御設備等		
河川用 水門設備	中・	大形	水門,	堰	扉体,戸当り,開閉装置,操作制御設備等		
	起	伏	à	堰	扉体,戸当り,開閉装置,操作制御設備等		
付 原	禹	設		備	操作橋,管理橋,階段,手摺等		

表-2・1 区分及び構成

- (注) 1. 小形水門とは、樋門・樋管、水路等に使用される河川用水門のうち、扉体面積が 10m² 未満のプレートガーダ構造ローラゲート又はスライドゲートのことをいう。
 - 2. 中・大形水門とは、樋門・樋管、水門に使用されるプレートガーダ構造ローラゲート、水門・堰等に使用されるシェル構造ローラゲート、施設の修理時に使用されるプレートガーダ構造角落しゲートのことをいう。

ただし、津波対策を目的とした水門設備は、対象としない。

- 3. 起伏堰とは、堰等に使用される鋼製の起伏ゲートのことをいい、トルク軸式のものを対象とする。
- 4. 河川用水門は構造用炭素鋼製、ステンレス鋼製を対象としており、全鋳鉄製・全アルミニウム製、FRP 製及びリーン二相鋼 (SUS821L1、SUS323L) 又はスーパー二相鋼 (SUS327L1) 等の新材料を使用した設備には適用出来ないので、別途積上げるものとする。
- 5. 水門設備に付随する管理橋, 階段, 防護柵等の付属設備の製作据付は, 「第 18 章 鋼製付属設備」によるものとする。
- 6. プレートガーダ構造ヒンジ式ゲート,プレートガーダ構造横引きゲート及び他の特殊構造ゲートには適用出来ないので,別途積上げるものとする。
- (2) 表 $-2 \cdot 1$ における区分に該当する設備は以下のとおりとする。

2 直接製作費

2-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=主要部材費+副部材費+部品費+補助材料費

- (2) 主要部材費
 - 1) 主要部材費の積算は、次式による。

主要部材費(円/式)=主要部材所要量(kg/式)×主要部材単価(円/kg)

なお、各区分毎の主要部材の範囲は、表-2・4のとおりとする。

2) 主要部材所要量の算定及び主要部材単価は、「第1章 一般共通⑤ 1 1-1(1)1)直接材料費」 に準じる。

なお,主要部材所要量の算定式は,表-2・2による。

3) 寸法エキストラは、厚みエキストラ、幅エキストラとし、幅エキストラは、必要に応じて計上するものとする。

表-2・2 主要部材所要量算定式

	区	分	主要部材所要量算定式	部材単価	摘 要
小	プレート 横造 でした がっぱい でした (三方 水密)	扉 体	ラック式 SS400・SM400 製 X=5 ㎡~10 ㎡未満 y=279×X-634 スキンプレート y×35% 桁等 y×50% 主ローラ y×10% 主ローラ軸 y×5%	スキンプレート =鋼板単価 桁等 =形鋼又は鋼板単価 主ローラ =鋳鋼品又は SUS 鋳鋼品単価 主ローラ軸 =SUS 棒鋼単価	X: 扉体面積(㎡) (純径間×有効高) y: 主要部材質量(kg)
			桁等 y×50%	スキンプレート=SUS 鋼板単価 桁等 =SUS 形鋼又は SUS 鋼板単価 主ローラ =鋳鋼品又は SUS 鋳鋼品単価 主ローラ軸 =SUS 棒鋼単価	
水		戸当り	L=25m未満 y=94×L-327 底部戸当り桁, ローラレー ル	底部戸当り桁, ローラレール =形鋼又は鋼板単価 底部水密板, 水密板, 側部戸当 り, ローラ踏面板, 膜板 =SUS 鋼板又は SUS 形鋼単価	L=戸当り総延長(m) y:主要部材質量(kg)
· 門	プレート ガーダー ガーリー がっぱっ かっぱっ かっと (四方水密)	扉 体	ラック式 $SS400 \cdot SM400$ 製 $X=10$ ㎡未満 $y=267 \times X+276$ スキンプレート $y \times 30\%$ 桁等 $y \times 45\%$ 主ローラ $y \times 15\%$ 主ローラ軸 $y \times 10\%$	スキンプレート =鋼板単価 桁等 =形鋼又は鋼板単価 主ローラ =鋳鋼品又は SUS 鋳鋼品単価 主ローラ軸 =SUS 棒鋼単価	X: 扉体面積(㎡) (純径間×有効高) y:主要部材質量(kg)
, r			桁等 y×50%	スキンプレート=SUS 鋼板単価 桁等 =SUS 形鋼又は SUS 鋼板単価 主ローラ =鋳鋼品又は SUS 鋳鋼品単価 主ローラ軸 =SUS 棒鋼単価	

(つづき)

					(つづき)
	区	分	主要部材所要量算定式	部材単価	摘 要
	プレート ガーダー 造ロート (四方水 密)	戸当り	L=25m未満 y=147×L-655 底部戸当り桁, ローラレール y×35% 底部水密板, 水密板, 側部戸当 り, 上部戸当り, ローラ踏面 板, 膜板 y×65%	底部戸当り桁,ローラレール =形鋼又は鋼板単価 底部水密板,水密板,側部戸当 り,上部戸当り,ローラ踏面 板,膜板 =SUS 鋼板又は SUS 形鋼単価	L=戸当り総延長(m) y:主要部材質量(kg)
	プレート ガーダ構 造スライ ドゲート (三方水 密)	扉 体	フック式 SS400・SM400 製 X=0.8 ㎡~10 ㎡未満 y=134×X-24 スキンプレート y×45% 桁等 y×50% 支圧板・水密ゴム押え金物 等 y× 5%	スキンプレート =鋼板単価 桁等 =形鋼単価 支圧板・水密ゴム押え金物等 =SUS 鋼板単価	X: 扉体面積(㎡) (純径間×有効高) y: 主要部材質量(kg)
小			ラック式 SUS 製 X=0.8 ㎡~10 ㎡未満 y=138×X-34 スキンプレート y×55% 桁等 y×40% 支圧板・水密ゴム押え金物 等 y×5%	スキンプレート=SUS 鋼板単価 桁等 = SUS 形鋼単価 支圧板・水密ゴム押え金物 等 = SUS 鋼板単価	
形					
				ما ماد حمل ماد	
⊸ 1.0		戸当り	L=25m未満 y=47×L-58 底部戸当り桁 y×10% 底部水密板, 水密板, 側部戸 当り y×90%	底部戸当り桁 =形鋼又は鋼板単価 底部水密板, 水密板, 側部戸当 り =SUS 鋼板又は SUS 形鋼単価	L=戸当り総延長(m) y:主要部材質量(kg)
水門	プレート ガーダイ 造スラート (四方水 密)	扉 体	フック式 SS400・SM400 製 X=0.8 ㎡~10 ㎡未満 y=216×X-13 スキンプレート y×45% 桁等 y×50% 支圧板・水密ゴム押え金物 等 y× 5%	スキンプレート =鋼板単価 桁等 =形鋼単価 支圧板・水密ゴム押え金物 等 =SUS 鋼板単価	X: 扉体面積(㎡) (純径間×有効高) y:主要部材質量(kg)
			ラック式 SUS 製 X=0.8 ㎡~10 ㎡未満 y=216×X-13 スキンプレート y×35% 桁等 y×55% 支圧板・水密ゴム押え金物 y×10%	スキンプレート=SUS 鋼板単価 桁等 =SUS 形鋼単価 支圧板・水密ゴム押え金物 等 =SUS 鋼板単価	
		戸当り	L=25m未満 y=47×L-58 底部戸当り桁 y×10% 底部水密板,水密板,側部戸当 り,上部戸当り y×90%	底部戸当り桁 =形鋼又は鋼板単価 底部水密板,水密板,側部戸当 り,上部戸当り=SUS 鋼板又は SUS 形鋼単価	L=戸当り総延長(m) y:主要部材質量(kg)

(つづき)

	(つづき)					
区	分	主要部材所要量算定式	部材単価	摘 要		
プレーダート方(密)	構 ラ	ラック式 SS400・SM400 製 X=10~35 ㎡ y=295×X-794 スキンプレート y×35% 桁等 y×50% 主ローラ y×10% 主ローラ軸 y× 5% ワイヤロープウインチ式 SS400・SM400 製 X=15~350 ㎡ y=602×X-7,164 スキンプレート y×20% 桁等 y×65% 主ローラ y×5% シーブ y×5%	スキンプレート=鋼板単価 桁等 =形鋼又は 鋼板単価 主ローラ =鋳鋼品又は SUS 鋳鋼品単価 主ローラ軸 =SUS 棒鋼単価 シーブ =鋳鋼品単価	X:		
· .	戸当り	L=15~70m y=474×L-6,081 底部戸当り桁,ローラレール y×65% 水密板,ローラ踏面板,膜板, ガイドプレート y×35%				
プレー ガーダ 造ロート ゲート (四方 密)	構 ラ	ラック式 SS400・SM400 製 X=10~40 ㎡ y=528×X-2,408 スキンプレート y×25% 桁等 y×60% 主ローラ y×10% 主ローラ軸 y× 5% ラック式 SUS 製 X=10~65 ㎡ y=568×X-1,720	SUS 鋳鋼品単価 主ローラ軸 =SUS 棒鋼単価	X: 扉体面積(㎡) (純径間×有効高) y:主要部材質量(kg)		
,		スキンプレート y×25% 桁等 y×55% 主ローラ y×15% 主ローラ軸 y× 5% ワイヤロープウインチ式 SS400・SM400 製 X=10~150 ㎡	= SUS 鋼板単価 桁等 = SUS 形鋼又は SUS 鋼板単価 主ローラ = 鋳鋼品又は SUS 鋳鋼品単価 主ローラ軸 = SUS 棒鋼単価			
堰		y=556×X-2,746 スキンプレート y×15% 桁等 y×65% 主ローラ y×10% 主ローラ軸 y× 5% シーブ y× 5%				
	戸当り	L=15~70m y=212×L-1,671 底部戸当り桁,ローラレール y×50% 水密板,ローラ踏面板,膜板, ガイドプレート y×50%		L=戸当り総延長(m) y:主要部材質量(kg)		

(つづき)

	区	分		主要部材所要量算定式	部材単価	摘要
	プレート ガーダ構 造ローラ ゲート	開装	閉置	1M1D(オープンギヤ式) 開閉荷重 W=250~2,600kN y=9.83×W+2,563 ドラム y×35% ギヤ,ピニオン y×20% シーブ y×5% 軸類 y×5% フレーム y×35%	ドラム = 鋳鋼品単価 ギヤ, ピニオン= 鋳鋼品単価 シーブ = 鋳鋼品単価 軸類 = 鋳鋼品単価 フレーム=形鋼又は鋼板単価	W:開閉荷重(kN) y:主要部材質量(kg)
中・大				1M2D(オープンギヤ式) 開閉荷重 W=75~3,500kN y=18.8×W-864 ドラム y×30% ギヤ,ピニオン y×20% シーブ y×5% 軸類 y×10% フレーム y×35%		
形水門,				2M2D(オープンギヤ式) 開閉荷重 W=150~5,500kN y=13.7×W+1,985 ドラム y×35% ギヤ,ピニオン y×20% シーブ y×10% 軸類 y×5% フレーム y×30%		
堰				1M1D(ドラム直結式) 開閉荷重 W=350~650kN y=6.51×W+4,154 ドラム y×40% シーブ y×5% 軸類 y×15% フレーム y×40%	ドラム = 鋳鋼品単価 シーブ = 鋳鋼品単価 軸類 = 鋳鋼品単価 フレーム=形鋼又は鋼板単価	W:開閉荷重(kN) y:主要部材質量(kg)
				1M2D(ドラム直結式) 開閉荷重 W=75~650kN y=19.4×W-517 ドラム y×40% シーブ y×5% 軸類 y×15% フレーム y×40%		

(注) 1. 小形水門の算定式で算出される扉体及び戸当りの所要量は、設計水深 $3\sim12m$ を標準とする。3m 未満の場合は、表 $-2\cdot3$ により補正するものとする。

設計水深による補正後の主要部材質量=y×補正係数

- 2. 扉体については、主要部材(主ローラ、ローラ軸は除く)に SS400 又は SM400 を使用する場合のみ適用可とし、SM490 等の機械的性質の異なるものやステンレス鋼材を使用する場合は、別途積上げるものとする。ただし、以下の場合で主要部材にステンレス鋼を使用する場合は適用可とする。
 - 小形水門の場合
 - ・中・大形水門、堰のうち水密形式が四方水密でラック式の場合
- 3. ワイヤロープウインチ式開閉装置は、オープンギヤ式又はドラム直結式の場合に適用する。その他の形式は、別途積上げるものとする。
- 4. シェル構造ローラゲート、プレートガーダ構造角落しゲート及び起伏ゲートについては、別途積上げるものとする。
- 5. 部材単価は、各構成要素で使用質量比率が最も大きい部材の単価を適用する。

表-2・3 設計水深による補正係数

区 分	設計水深 3m未満
小形水門	0.95

(3) 副部材費

副部材費の積算は,次式による。

副部材費(円/式)=主要部材費(円/式)×副部材費率(%)

なお,各区分毎の副部材の範囲は,表 $-2\cdot4$ のとおりとし,副部材費率は,表 $-2\cdot5$ によるものとする。

表-2・4 主要部材・副部材の範囲

	F	^			主 要 ・ 副 部 材 の 範 囲		
	区	分	•		主 要 部 材	副部材 (副部材費率に含まれる部材)	
小	プレートガーダ 構造ローラゲー ト	扉		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W), 主ローラ部 (主ローラ, 主ローラ軸)	扉体を構成する主要部材以外の部材	
形		戸	当	ŋ	底部戸当り金物(桁,水密板),側部戸当り金物(主ローラレール(F,W)ガイドプレート,膜板,主ローラ踏面板,側部水密板),上部戸当り金物(水密板,ガイドプレート)	戸当りを構成する主要部材以外の部材	
水	プレートガーダ 構造スライドゲ ート	扉		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W), クサビ, 支圧板, 水密ゴム押え金物	扉体を構成する主要部材以外の部材	
門		戸	当	ŋ	底部戸当り金物(桁(F, W), 水密板), 側部戸当り金物(スライドレール(F, W), 膜板,側部水密板,裏桁),上部戸当り金 物(水密板,ガイドプレート)	戸当りを構成する主要部材以外の部材	
	プレートガーダ 構造ローラゲー ト	扉		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), ダイヤフラム (F, W), 端縦桁 (F, W), ロッカービーム部 (軸, 本体, ローラ, ローラ軸) 主ローラ部 (主ローラ, 軸), シーブ部 (シーブ)	扉体を構成する主要部材以外の部材 (扉体付点検用梯子,手摺等を含む。)	
中		戸	当	ŋ	底部戸当り金物(桁, 水密板)側部戸当り金物(主ローラレール(F, W), 膜板, 取外し戸当り支持金物,主ローラ踏面板, 水密板), 上部戸当り金物(水密板, ガイドプレート)	戸当りを構成する主要部材以外の部材	
大		開	閉装	置	ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F , W)	開閉装置を構成する主要部材以外の部材 (オイル受け、ギヤ等のカバー、大形開 閉装置等に設ける開閉装置付の点検用梯 子を含む。)	
形水	シェル構造ロー ラゲート	扉		体	スキンプレート, 上面板, 背面板, 底面板, 補助桁 (F, W), ダイヤフラム (F, W), 端縦桁 (F, W), シーブ部 (シーブ), 主ローラ部 (主ローラ, 軸)	扉体を構成する主要部材以外の部材(扉体付点検用梯子,手摺等を含む。)	
門,		戸	当	ŋ	底部戸当り金物(桁,水密板),側部戸当り金物(主ローラレール(F,W),主ローラ踏面板,取外し戸当り支持金物,膜板),上部戸当り金物(水密板,ガイドプレート)	戸当りを構成する主要部材以外の部材	
堰		開	閉装	置	ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F , W)	開閉装置を構成する主要部材以外の部材 (オイル受け、ギヤ等のカバー、大形開 閉装置等に設ける開閉装置付の点検用梯 子を含む。)	
	プレートガーダ 構造角落しゲー	扉		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W),	扉体を構成する主要部材以外の部材	
	1	戸	当	ŋ	底部戸当り金物(桁 (F, W), 水密板), 側部戸当り金物 (側部水密板)	戸当りを構成する主要部材以外の部材	

区		分	主 要 ・ 副 部 材 の 範 囲		
)J	主 要 部 材	副部材(副部材費率に含まれる部材)	
起	起伏ゲート	扉 体	トルク軸,スキンプレート,背面板(魚腹形の場合),主桁(F,W),補助桁(F,W),ダイヤフラム(F,W),端縦桁(F,W),トルクチューブ,ヒンジ部(軸),中間軸受(軸受,基礎金物)	扉体を構成する主要部材以外の部材	
伏場場		戸当り	側部戸当り金物(サイドプレート(側面 水密板), 軸受部), 底部戸当り金物(底 部戸当り桁)	戸当りを構成する主要部材以外の部材	
		開閉装置	軸受架台,トルクアーム,テール金物, テール金物架台,ピン	開閉装置を構成する主要部材以外の部材	

- (注) 1. 表中「F」はフランジ,「W」はウェブを示す。
 - 2. 主要部材のうち、ゲートが三方水密構造の場合戸当りの上部戸当り金物は該当しない。
 - 3. 起伏ゲートの開閉装置は、油圧シリンダ式であり、中・大形水門、堰の開閉装置は、 ワイヤロープウインチ式である。
 - 4. 小形水門の開閉装置は、ラック式又はスピンドル式開閉装置の使用を標準とする。
 - 5. 油圧シリンダ式開閉装置の副部材費率には、油圧配管等は含まれないため、所要量を別途積上げるものとする。

なお,油圧配管は,直接製作費での計上を原則とする。

- 6. 主要部材には、水密ゴム押え金物、クサビは含まれない(副部材費に含まれる)。ただし、小形水門のスライドゲートについては除くものとする。
- 7. プレートガーダ構造ゲートのカバープレートは、副部材費に含まれないため、所要量を別途積上げるものとする。

(4) 部品費

部品費の積算は,次式による。

部品費 (円/式) =主要部材費 (円/式) ×部品費率 (%)

なお、部品費率は、表 $-2 \cdot 5$ によるものとし、部品費率に含まれる部品の品目は、次のとおりとする。

各種軸受(オイルレスベアリング、ピローユニット)、水密ゴム、オイルシール、 各種スイッチ、各種リレー、軸継手、チェーン、スプロケット、ボルト、ナット等

	区	分			副部材費率	部品費率	補助材料費率
	プレートガーダ構造ローラ	宣/上	SS400 · SI	M400	13. 5	5. 5	
	ゲート	扉体	SUS		6. 5	2. 0	
小形水門		戸	当	ŋ	3. 5	0. 5	13. 0
水門	プレートガーダ構造スライ	扉体	SS400 · SI	M400	10.0	16. 5	13.0
	ドゲート	月刊	SUS		9. 0	5. 0	
		戸	当	ŋ	6. 0	1.0	
	プレートガーダ構造ローラ		SS400 · SI	M400	15. 5	22. 0	
	ゲート(三方水密・四方水密)	扉体	SUS 製(II 水密のみ		11.5	15. 0	6. 5
中		戸	当	ŋ	29. 0	2. 5	
大形		開	閉装	置	26. 0	38. 0	
水門	シェル構造ローラゲート	扉		体	20.0	38. 0	
堰		戸	当	ŋ	20.0	1. 5	10.0
		開	閉装	置	26. 0	38. 0	
	プレートガーダ構造角落し ゲート	扉		体	7. 5	30. 0	10. 0
	クード	戸	当	り	0. 5	0. 5	10.0
护	起伏ゲート	扉		体	6. 0	3. 0	
起伏堰		戸	当	り	13. 5	31. 0	10.0
~IZ		開	閉装	置	3. 0	3. 5	

- (注) 1. 小形水門の開閉装置は、ラック式又はスピンドル式、中・大形水門、堰の開閉装置は、ワイヤロープウインチ式、起伏ゲートの開閉装置は、油圧シリンダ式の率である。
 - 2. 小形水門のうちプレートガーダ構造ローラゲートの主ローラ軸受及び水密ゴム,プレートガーダ構造スライドゲートの水密ゴムについては,部品費率に含まれないので,別途積上げるものとする。
 - 3. 油圧シリンダ式開閉装置において、シリンダ軸受 (ころがり軸受、すべり軸受) については、部品費に含まれないため、別途積上げるものとする。

また,副部材費率,部品費率には,油圧配管の材料費は含まれていないため,別途 積上げるものとする。

- 4. ラック式又はスピンドル式開閉装置を使用する場合は、機器単体品として計上する。
- 5. ワイヤロープウインチ式開閉装置は、次式により開閉装置の副部材費率、部品費率 の補正を行うものとし、補正係数は、表 $-2\cdot6$ によるものとする。

副部材費率=副部材費率×F1×F2

部品費率 =部品費率 ×F1×F2

F1:休止装置の有無による補正係数

F2: ドラム直結式 (オープンギヤ無し) 補正係数

6. 扉体は、主要部材(主ローラ、ローラ軸は除く)に SS400 又は SM400 を使用する場合のみ適用可とし、SM490 等の機械的性質の異なるものやステンレス鋼材を使用する場合は、扉体の副部材及び部品は、別途積上げるものとする。小形水門及びプレートガーダ構造ローラゲート(四方水密)の扉体については、主要部材(主ローラ、ローラ軸は除く)に SS400 又は SM400 又はステンレス鋼材を使用する場合のみ適用可とする。ただし、起伏ゲートは除く。

表-2・6 ワイヤーロープウインチ式開閉装置補正係数

補 正 の 種 別	補 正	係 数
休止装置の有無による補正係数 F1	休止装置有り 1.00	休止装置無し 0.75
ドラム直結式 (オープンギヤ無し) の 補正係数 F2	ドラム直結式 1.25	その他 1.00

(注) ドラム直結式とは、オープンギヤ等による減速を行わず、減速機のみにより減速し、カウンタシャフト等を介し、ドラムを直接駆動する構造とする。

(5) 補助材料費

補助材料費の積算は、次式による。

補助材料費 $(H/式) = (主要部材費 (H/式) + 副部材費 (H/式)) ×補助材料費率 (%) なお、補助材料費率は、表<math>-2 \cdot 5$ によるものとする。

2-2 機器単体費

(1) 機器単体費として計上する品目は、次のとおりとする。

電動機,原動機,減速機,クラッチ,制動機,油圧シリンダ,油圧ユニット,油圧ポンプ,油圧モータ,自動ろ過装置,電動油圧シリンダ,ラック式開閉装置,スピンドル式開閉装置,バルブ駆動装置,集中給油装置,ワイヤーロープ,ワイヤ弛み過負荷検出装置,開度計,電気防食用流電陽極,自家発電装置,始動用抵抗器,速度制御用抵抗器,自動制御機器,監視操作盤類,接続端子盤,凍結防止装置,計装機器,水位測定装置,流量測定装置,天井走行クレーン,ホイスト,チェーンブロック,弁及び管継手等

(2) ラック式又はスピンドル式開閉装置を使用する場合の機器単体品の範囲は、開閉装置本体、ラック棒、スピンドル棒、吊り金具、振れ止め金具(中間軸受)とし、扉体付きの吊り金具(吊りピン及び軸受)は扉体の副部材費率に含まれるものとする。

2-3 製作工数

(1) 製作工数

製作工数は, 次式による。

$Y = y \times Km \times Ks \times Kn$

Y:製作区分毎1門当りの製作工数(人/門)

y:製作区分毎1門当りの標準製作工数(人/門)

Km:使用材料による補正係数

Ks:構造による補正係数 Kn:製作数による補正係数

(2) 標準製作工数

製作工数は、表-2・7によるものとする。

表-2.7 標準製作工数

区	構 成分	扉 体 (人/門)	戸 当 り (門分)	開閉装置(基)	
	プレートガーダ構造ローラゲート (三方水密)	$y=5.28 \chi_1+0.35$ $\chi_1:10 \text{ m}^2$ 未満	y=1.53 x ₂ +3.67 x ₂ :25m 未満		
小形	プレートガーダ構造ローラゲート (四方水密)	$y=5.23 \chi_1+4.94$ $\chi_1:10 m^2 未満$	$y=1.71 \chi_2+0.38$ $\chi_2:25m 未満$		
水門	プレートガーダ構造スライドゲート (三方水密)	$y=3.87 \chi_1+2.19$ $\chi_1:10m^2$ 未満	$y=0.59$ $\chi_2+2.67$ $\chi_2:25m$ 未満		
	プレートガーダ構造スライドゲート (四方水密)	$y=3.87 \chi_1+2.19$ $\chi_1:10 \text{ m}^2$ 未満	$y=0.59$ $\chi_2+2.67$ $\chi_2:25m$ 未満		
	プレートガーダ構造ローラゲート (三方水密)	y=6.88 χ_1 -15 $\chi_1:10\sim300 \text{ m}^2$	y=6.58 χ_2 -75 $\chi_2:15\sim$ 85m	1M1D $y = 6.64 \chi_3^{0.6388}$	
中・大	プレートガーダ構造ローラゲート (四方水密)	$y=7.4 \chi_1-15 $ $\chi_1:10\sim80 \text{ m}^2$	y=5.42 χ_2 -66 $\chi_2:15\sim$ 65m	$\chi_3: 100\sim 2,500 \mathrm{kN}$ 1M2D $y=2.74 \chi_3^{0.8016}$ $\chi_3: 100\sim 1,200 \mathrm{kN}$ 2M2D $y=34.8 \chi_3^{0.4368}$ $\chi_3: 200\sim 5,500 \mathrm{kN}$	
形水門,堰	シェル構造ローラゲート	y=11.47 χ_1 -23.6 χ_1 :20 \sim 300 m ²	y=10.49 $^{\chi}_2$ -206 $^{\chi}_2$:30 \sim 90m		
	プレートガーダ構造角落しゲート	$y=2.8 \chi_1+10 $ $\chi_1:10\sim60 \text{ m}^2$	$y=0.8 x_2+1.5$ $x_2:10\sim30m$		
起伏堰	起伏ゲート	$y=7.94 x_1-1$ $x_1:5\sim60 m^2$	y=4.57 x_2 -10 x_2 : 7~35m	$y=0.05 \chi_3+11.97$ $\chi_3:100\sim600 kNm$	
	摘要	X1: 扉体面積(m²) 四方水密の場合 純径間(樋管内空幅)(m) ×有効高(樋管内空高)(m) 三方水密の場合 純径間(堰(門)柱面間距離) (m)×有効高(扉高)(m)	x_2 : 戸当り延長(m) 四方水密の場合 片側側部戸当り高さ(m) $\times 2$ +純径間(m) $\times 2$ 三方水密の場合 片側側部戸当り高さ(m) $\times 2$ +純径間(m)	x ₃ : 開閉荷重 (kN) なお, 起伏ゲートの x ₃ は開閉トルク (kNm) とする	

- (注) 1. y は標準製作工数 (人/門, 門分, 基), $x_1 \sim x_3$ は摘要に記載している 1 門当りの各々の要素である。
 - 2. 扉体の標準製作工数は、一般構造用圧延鋼材及び溶接構造用圧延鋼材について、その機械的性質にかかわらず適用出来る。
 - 3. 戸当りの標準工数は、次に示す条件では使用出来ないので別途積上げるものとする。
 - (1) 小形水門

片側側部戸当り高>有効高×3.0

(2) 中·大形水門,堰

プレートガーダ構造ローラゲート 片側側部戸当り高>有効高×4.5 シェル構造ローラゲート 片側側部戸当り高>有効高×5.0

4. 標準製作工数に含む内容は、次のとおりである。

ゲート形式毎の構成 (扉体,戸当り,開閉装置)の製作工数

- (1) 扉 体 扉体及び扉体付点検梯子・手摺・歩廊等。
- (2) 戸 当 り 戸当り及び戸当りに設置される空気箱等。
- (3) 開閉装置 (注) 7.項による。
- 5. 2段式シェル構造ゲートとする場合は、次による。
 - (1) 扉体の製作工数は、上段扉、下段扉毎に工数を算定し合算するものとする。
 - (2) 戸当りの製作工数は、上段扉用と下段扉用の戸当り延長を合算したものを α_2 として標準製作工数式に代入し工数を算定するものとする。
- 6. 「シェル構造ローラゲート」+「フラップゲート」の製作工数は、上段扉(フラップゲート)を 起伏ゲート工数算定式により算出し、下段扉(シェル構造ローラゲート)をシェル構造ゲート工数 算定式により算出し、各々を合算するものとする。

7. 開閉装置の標準製作工数

- (1) ラック式又はスピンドル式開閉装置は、機器単体費で計上するものとし、製作工数は、計上しないものとする。
- (2) 1M1D, 1M2D, 2M2D 開閉装置は、ドラムをオープンギアで減速駆動する方式で、休止装置が設けられるものを標準とする工数であり、標準以外のものは、表 $-2\cdot9$ により補正するものとする。
- (3) 起伏ゲートの開閉装置は、油圧シリンダ式であり、中・大形水門、堰の開閉装置は、ワイヤロープウインチ式である。

なお、開閉装置本体が機器単体品の場合は、「2-2機器単体費」による。

(4) 標準製作工数に含む内容は、次のとおりである。

開閉装置毎の製作工数

- ①ワイヤロープウインチ式……開閉装置全体,大形開閉装置付の点検梯子等 ②油圧シリンダ式(起伏ゲート)……トルクアーム等
- 8. 下記については標準工数に含まれないため別途積上げるものとする。
 - (1) 開閉装置の点検設備(オーバーブリッジ形の通路,転向シーブ架台),ロープダクト,油圧開閉装置の油圧配管等。
 - (2) ガントリクレーン形式の開閉装置。
 - (3) 据付架台(設備の現地組立等に際して使用する架台のうち工場製作され埋設されるもの)
 - (4) 河川用水門設備に付帯する管理橋,階段,防護柵等の付属設備。 なお,付属設備の製作工数は,「2-3 製作工数(4)付属設備製作工数」による。

(3) 工数補正

1) 使用材料による補正

主要部材にステンレス鋼,ステンレスクラッド鋼を使用した場合の補正係数(Km)は、次式による。

$$Km = (Km^{100} - Km^{0}) \frac{W_1}{W_2} + Km^{0}$$

Km =使用材料による補正係数

 $Km^{100} \cdot Km^0 =$ ステンレス鋼及びステンレスクラッド鋼の補正係数 (表 $-2 \cdot 8$)

W₁ =主要部材中のステンレス鋼及びステンレスクラッド鋼の質量(kg)

W₂ =主要部材の質量 (kg)

Kmは、小数第3位を四捨五入して、第2位とする。

表-2・8 ステンレス鋼及びステンレスクラッド鋼の補正係数 (Km)

記	强 備 区 分	区分	係数 Km ⁰	係数 Km ¹⁰⁰
小形水門	プレートガーダ構造ローラ・スライドゲート	扉 体	1. 0	1.3
中・大形水門、堰	プレートガーダ構造ローラゲート	扉 体	1. 0	1.3
中・入形小門,堰	シェル構造ローラゲート	扉 体	0. 91	1. 12
起伏堰	起伏ゲート	扉 体	0. 77	1. 0

- (注) 1. 各設備の「扉体」のみ補正を行うものとし、「戸当り」「開閉装置」「基礎材」については、材質による補正を行わないものとする。
 - 2. 普通ローラゲート、シェルローラゲート、小形水門のローラ・シーブ軸、水密ゴム 押え板など標準的にステンレス鋼が使用されるものについては、補正の対象にしない ものとする。また、主要部材中のステンレス鋼及びステンレスクラッド鋼の質量(W₁)には、含めないものとするが主要部材の質量(W₂)には、含めて算出するものとする。

2) 構造による補正

ワイヤロープウインチ式開閉装置は、構造による補正を行うものとし、補正係数(Ks)は、次式による。

$Ks = F1 \times F2$

xお, F1, F2 は, 表 $-2 \cdot 9$ による。

表-2・9 開閉装置形式による補正係数 (F1, F2)

F1 休止装置の有無によ	る補正係数	F2 ドラム駆動方式による補正係数		
休止装置有り	1.0	オープンギヤ式	1. 0	
休止装置無し	0.9	ドラム直結式	0. 9	

3) 製作数による補正

同形状規格のものを複数(門)同時発注する場合の補正係数(Kn)は,表-2・10による。

表-2・10 製作数による補正係数 (Kn)

製作数(門)	2	3	4	5以上
補正係数(1 門当り)	0.95	0.93	0.92	0. 91

(4) 付属設備製作工数

河川用水門に付帯する付属設備の製作工数は、「第 18 章 鋼製付属設備」によるものとするが、 各付属設備の適用区分は、表-2・11 を標準とする。

表-2・11 鋼製付属設備の適用区分

製 作 区 分	適用区分	摘 要
転向シーブ点検架台	区分 A	
ロープダクト	区分 D	
据付架台	区分 D	
油圧配管	区分 D	既製管による

- (注) 1. 間接労務費率,工場管理費率,補助材料費率は鋼製付属設備の率とする。
 - 2. 上記区分において、主体となる設備と一体で主設備の機能の一部となる場合は、間接製作費は主設備本体の率とする。
 - 3. ステンレス及びステンレスクラッド鋼を使用した場合は、「第 18 章 鋼製付属設備」 に準じて補正を行うものとする。

2-4 工場塗装費

(1) 標準的な構造の水門設備の工場塗装費については、次式による。

工場塗装費(円/式) = 製作直接労務費(円/式) × 塗装費率(%) なお、塗装費率は、表 $-2 \cdot 12$ による。

表-2・12 塗装費率

(%)

区分	構成	扉体塗装費率	戸当り塗装費率	開閉装置塗装費率
小 形 水 門	プレートガーダ構造 ローラ・スライドゲート	20	8	_
中・大形水門,堰	プレートガーダ構造 ローラゲート	21	11	7

- (注) 1. 塗装費率には、塗装費及びステンレス表面処理費を含む。
 - 2. 扉体については、主要部材(スキンプレート、桁等)にステンレス鋼を使用している場合は、小形水門、中・大形水門、堰ともに9%とする。
 - 3. 開閉装置の塗装費率は、1M1D、1M2D、2M2Dの場合に適用するものとする(ラック式・スピンドル式等の機器単体品の場合は、適用しない)。
 - 4. 塗装仕様は、エポキシ樹脂系、ふっ素樹脂系、ポリウレタン樹脂系で下塗りにミストコートを塗布する場合に適用し、下塗りにミストコートを施さない場合は、別途考慮するものとする。その他の仕様については、別途積上げるものとする。
 - 5. 塗装は、上塗りまで工場塗装を標準とする。
 - 6. シェル構造ローラゲート, プレートガーダ構造角落しゲート及び起伏ゲートについては, 別途積上げるものとする。

2-5 直接経費

- (1) 木型費は、鋳放し単価に含めるものとし、積算の対象としない。
- (2) 特許又は特殊技術に係る製作で、専門業者により行われるものは直接経費の項で計上するものとする。

3 直接工事費

3-1 材料費

(1) 材料費構成

材料費の構成は、次のとおりとする。

材料費=据付材料費+据付補助材料費

(2) 据付材料費

据付材料費の積算は, 次式による。

据付材料費(円/式)=据付労務費(円/式)×据付材料費率(%)

据付労務費(円/式)=職種別据付工数(人/式)×職種別賃金(円/人)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は、対象としない。

なお、据付材料費率は、表 $-2 \cdot 13$ による。

			区分	据付材料費率	据付補助材料費率
小	形水	門	プレートガーダ構造ローラ・スライドゲート (三方・四方水密)	10.5	1.5
			プレートガーダ構造ローラゲート (三方・四方水密)		
中・	大形水門,	堰	シェル構造ローラゲート	14. 0	4. 0
			プレートガーダ構造角落しゲート		
起	伏	堰	起伏ゲート		

表-2・13 据付材料費率及び据付補助材料費率

(%)

- (注) 1. 小形水門で二次側電気配線配管の施工が必要ない場合は,据付材料費率を3%とする。
 - 2. 据付材料費率に含まれる材料は、次のとおりとする。

据付けに必要な現場で加工するアンカー材・ステー材,電動式開閉装置の場合の機 側操作盤以降(機側操作盤から開閉装置まで)の電線・電線管,油脂類等(据付けの ための作業油・潤滑油を含む)

3. 動力, 照明等のための電源引き込み(引込柱から機側操作盤まで)に必要な材料費の所要量は, 別途積上げるものとする。

(3) 据付補助材料費

据付補助材料費の積算は,次式による。

据付補助材料費(円/式)=据付労務費(円/式)×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は、対象としない。

なお、据付補助材料費率は、表-2・13による。

3-2 据付工数

(1) 据付工数は次式による。

$Y = y \times Kn$

Y:設備1門当りの据付工数(人)

y:設備1門当りの標準据付工数(人)

Kn:据付数による補正係数

(2) 標準据付工数

据付工数は、表 $-2 \cdot 14$ によるものとする。

表-2・14 標準据付工数

		標準工数			職種別構成	割合 (%)
	区分	y:設備1門当り の標準据付工数 (人)	摘	要	機械設備 据付工	普通作業員
	プレートガーダ構造ローラゲート (三方水密	y=3.3x+19.93				
小形	プレートガーダ構造ローラゲート (四方水密	y=3.37x+21.01				
水門	プレートガーダ構造スライドゲート (三方水密	y=3.49x+8.5				
	プレートガーダ構造スライドゲート (四方水密	y=3.49x+8.5	x: 扉体面積 (m²) (純径間 (m) ×7	有効高 (m))	80	20
中	プレートガーダ構造ローラゲート (三方水密	y=4.1x+11.93	なお, x の定義及 -2・7 標準製作J			
- 大形水門	プレートガーダ構造ローラゲート (四方水密	y=6.8x-13.29	ある			
水門, 堰	シェル構造ローラゲート (単葉・2 B	y=6.9x+124.9				
	プレートガーダ構造角落しゲート	y=1.6x+7.52				
起伏堰	起伏ゲート	$y = 18.8x^{0.7}$				

- (注) 1. 各設備の標準工数の範囲は, 扉体, 戸当り, 開閉装置, 機側操作盤, 各種配電盤, 機側操作盤以降(機側操作盤から開閉装置まで)の電気配線及び配管, 据付架台の据付け, 組立架台の設置及び撤去等, 準備, 試運転調整, 清掃及び後片付けまでとする。
 - 2. 手動式,エンジン式開閉装置等のように,機側操作盤,各種配電盤,機側操作盤以降の電気配線 及び配管の施工の必要のない場合は,据付工数を10%低減するものとする。
 - 3. 標準据付工数の範囲には、二次コンクリート打設、コンクリートはつり等の関連土木工事は、含まれていないため、別途積上げるものとする。
 - 4. 中・大形水門,堰,起伏堰における油圧式開閉装置の油圧配管の据付工数は,標準据付工数の範囲に含まれる。
 - 5. 標準据付工数の範囲には、動力、照明等のための電源引き込み(引込柱等から機側操作盤まで)は、含まないので別途積上げるものとする。
 - 6. 河川用水門設備に付帯する管理橋,階段,防護柵等の付属設備の据付工数は,「第 18 章 鋼製付 属設備」によるものとし,各付属設備の適用区分は表-2・11 に準じること。
 - 7. 標準据付工数は、規格ゲート等の既製品水門扉の据付けには適用出来ない。
 - 8. 自家発電設備の据付工数は、別途積上げるものとする。
 - 9. 中・大形水門のプレートガーダ構造ローラゲート (三方水密, 四方水密) の据付工数は, 扉体を現場に分割搬入し, 現場接合するものが対象である。

扉体の現場接合を行わないものは、小形水門の据付工数を適用する。

- 10. 角落しゲートの据付工数は、戸当りのみである。扉体等の据付工数は、別途積上げるものとする。
- 11. 各設備の標準据付工数は、据付現場が仮締切内等のドライな環境で、トラッククレーン等により 据付可能な場合のものである。
- 12. 分割発注の場合の区分別工数は、次式による。

区分別工数(人/門) =全体工数(人/門) ×区分別工数比率

なお,区分別工数比率は,表-2・15による。

表-2・15 区分別工数比率

	区 分	I	数 比 率 (%)
種 別		扉 体	戸当り	開閉装置
小形水門	プレートガーダ構造ローラ・スライドゲート (三方水密)	30	45	25
小形水門	プレートガーダ構造ローラ・スライドゲート (四方水密)	30	45	25
	プレートガーダ構造ローラゲート (三方水密)	35	40	25
中·大形水門, 堰	プレートガーダ構造ローラゲート (四方水密)	35	40	25
	シェル構造ローラゲート	45	20	35
起伏堰	起伏ゲート	25	50	25

(注) 中・大形水門のプレートガーダ構造ローラゲート (三方水密・四方水密) で、扉体の現場溶接を行わないものは、小形水門の区分別工数比率を適用する。

(3) 工数補正

1) 据付数による補正

同時期・現場,同等規模・形式の水門設備を複数(門)据付ける場合の補正係数は,次式による。据付工数((/式) =標準据付工数((/式) ×据付数による補正係数

なお、据付数による補正係数は、表-2・16のとおりとする。

表-2・16 据付数による補正係数 (Kn)

据付数(門)	2	3	4	5以上
補正係数(1 門当り)	0.95	0.92	0.90	0.88

3-3 機械経費

(1) 標準機械器具

据付けに係る機械経費は、表-2・17を標準として計上するものとする。

なお、機種選定、所要数量、運転時間(日数)等については、据付条件並びに関連工事などを勘 案のうえ決定するものとする。

ただし、河川用水門設備のクレーン標準運転日数等は、表-2・18による。

また、河川用水門設備の電気溶接機運転日数は、表-2・19による。

表-2・17 標準機械器具

	機械器具名			標準規格	摘	要	
ク	レ	レ ー ン 表-2・18による					
電	気	溶	接	機	表-2・19 による		
		"			直流アーク式 500A	ガウジング用	
空	気	圧	縮	機	排出ガス対策型	ガウジング そ	の他
発	動	発	電	機	排出ガス対策型	商用電源がない	場合
組	7/		架	台		3-3 (4) 組	立架台による
その他必要なもの		。 の		現場条件により	計上する		
雑	器	具	損	料		機械器具費×2%	6

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

(2) クレーン

クレーンの運転日数等は、表-2・18を標準とする。

表-2・18 クレーン標準運転日数等

					区分別構成比(%)			
対	象 設 備	機種	規格	標準運転日数	扉体	戸当り	開閉 装置	
小形水門	プレートガーダ構造ローラ ・スライドゲート (三方水密・四方水密)	各種 クレーン	(注)4 による	D=3	1 日	1 日	1日	
中・大形	プレートガーダ構造ローラゲート (三方水密・四方水密)	各種 クレーン	(注)5 による	D=0.22x+0.33	35	45	20	
水門,堰	シェル構造ローラゲート	各種 クレーン	(注)5 による	D=0.22x+7.1	45	30	25	
起伏堰	起伏ゲート	各種 クレーン	(注)5 による	D=0.39x+1.6	30	50	20	

- (注) 1. Dは設備1門当りの運転日数である。
 - 2. x は1 門当りの扉体面積(純径間(m)×有効高(m))である。
 - 3. 本表は、据付現場が仮締切内等で、ドライ施工が可能な場合の標準的なクレーンの規格と運転日数である。施工条件が異なる場合は、本表によらず別途積上げるものとする。
 - 4. 小形水門の各種クレーン能力は、最大部材質量、作業半径等を考慮して決定する。
 - 5. 中・大形水門, 堰及び起伏堰のクレーン規格については, 施工条件, 方法等を勘案 の上決定するものとする。

(3) 溶接機

溶接機の規格及び運転日数は、表-2・19を標準とする。

表-2・19 溶接機の規格及び運転日数

	対 象 設 備	機 種	規格	標準運	転日数	摘要
小形水門	プレートガーダ構造ロー ラ・スライドゲート (三方 水密・四方水密)		200A	D=4		
	電気溶接機 (交流アーク式 (手 プレートガーダ構造ロー 動・電撃防止器内蔵型) 又はデ ラゲート (三方水密・四方 ィーゼルエンジン駆動・直流ア 200		200A	現場接合無し	D=0.20x+3.2	D=運転日数 x=扉体面積
中・大 形水	水密)	ーク式・排出ガス対策型(第 2 次基準値))	20011	現場接合有り	D=0.55x-0.5	なお, x の定 義及び範囲は 表-2・7 標準
門,堰	シェル構造ローラゲート	電気溶接機(交流アーク式(手動・電撃防止器内蔵型)又はディーゼルエンジン駆動・直流アーク式・排出ガス対策型(第2次基準値))	200A	D=1.56x		製作工数と同じである
起 伏 堰	起伏ゲート	現場条件により 決定するもの とする		現場条件によりする	決定するものと	

- (注) 1. Dは設備1門当りの運転日数である。
 - 2. xは1門当りの扉体面積(純径間(m)×有効高(m))である。
 - 3. 溶接機の運転日当りの標準運転時間は,5時間とする。

(4) 組立架台

1) 組立架台の経費は、次式による。

組立架台経費=基礎価格(円)×損料率(%)

2) 組立架台の基礎価格及び損料率は、表-2・20を標準とする。

表-2・20 組立架台基礎価格及び損料率

(%)

	基礎価格							
区分	直接製作費		間接製作費		一般管理費等率	損料率		
	材料費	労務費	間接労務費率	工場管理費率	一放官理貨等率			
組立架台	所要量を 積上げ	「第 18 章 鋼製付属 設備」による製作工数 に賃金を乗じて算出 する。	75	20	14	30		

(注) 1. 組立架台は、分割搬入した扉体等を地組する際に使用する埋設されない架台であり、複数契約で 転用使用することを標準とし、1契約当り基礎価格の30%を減価償却費及び転用補修費として損料 計上するものとする。

なお、同一契約で同時期、同現場において組立架台を再利用しながら複数門を順次据付ける場合であっても、1 契約で 30%を計上するものとする。

- 2. 基礎価格には組立架台の製造設計に係る経費として間接労務費及び工場管理費は計上するが、設計技術費は、計上しない。
- 3. コンクリート等に埋設される据付架台は別途計上するものとする。

3-4 試運転費

試運転工数は、据付工数に含まれているので計上しないものとする。

3-5 直接経費

- (1) 二次コンクリート及び型枠費
 - 1) 材料費

コンクリート及び型枠等の材料を積上げ計上するものとする。

2) 施工工数

施工工数は, 次式による。

 $Y(\Lambda/式) = y(\Lambda/P) \times P(M)$

Y:設備n門当りの施工工数(人/式)

y:設備1門当りの標準施工工数(人/門)

なお,標準施工工数は,表-2・21による。

表-2・21 二次コンクリート及び型枠標準施工工数

		無準払工工料		職種別構成割合(%)		
	区 分	分 (人/門)	摘要	土木一般 世話役	普通 作業員	
小形水門	プレートガーダ構造 ローラ・スライドゲー (三方水密・四方水密)	,	x:コンクリート 打設量 (m3)	70	30	

(注) 1. 標準施工工数の範囲は、二次コンクリートの打設・一般養生、一般型枠の製作・加工・組立・設置・解体・撤去までとし、コンクリートのはつりや仮設足場等が必要な場合は別途積上げるものとする。

- 2. コンクリートの特殊養生が必要な場合や、化粧及び円形型枠を使用する場合は、別途積上げるものとする。
- 3. 中・大形水門、堰、及び起伏堰については、必要な工数を別途積上げるものとする。

3) 機械経費

現場条件に応じて、必要な機械器具を積上げ計上するものとする。

4 直接工事費(修繕)

4-1 材料費

(1) 据付材料費

据付に必要な材料等は、積上げ計上するものとする。

(2) 据付補助材料費

据付補助材料費の積算は,次式による。

据付補助材料費(円/式)=据付労務費(円/式)×据付補助材料費率(%)

据付労務費は、据付対象設備の修繕(取替・扉体取外し)に従事する機械設備据付工、普通作業員、電工の労務費をいい、別途計上される土木工事費、電気工事費中の労務費は対象としない。 なお、据付材料費率は、表-2・22による。

表-2・22 据付補助材料費率

(%)

			区分	据付補助材料費率
小	形 水	門	プレートガーダ構造ローラ・スライドゲート (三方水密・四方水密)	1.5
			プレートガーダ構造ローラゲート (三方水密・四方水密)	
中・	大形水門,	堰	シェル構造ローラゲート	4. 0
			プレートガーダ構造角落しゲート	
起	伏	堰	起伏ゲート	

4-2 取替工数

- (1) ワイヤロープ取替工数
 - 1) 取替工数

取替工数は, 次式による。

Y(人/式)=y(人/門)×門数(門)

Y:設備 n 門当りの取替工数 (人/式)

y:設備1門当りの標準取替工数(人/門)

2)標準取替工数

ワイヤロープウインチ式開閉装置のワイヤ取替工数は、表-2・23のとおりとする。

表-2・23 ワイヤロープ標準取替工数

E //	標準取替工数 区 分 v:取替工数 摘		職種別構成割合(%)
区分	y:取督工数 (人/門)	摘要	機械設備据付工
ワイヤロープ ウインチ式開閉装置	y = 0.105 x + 2.88	x = ロープ全長 (m) 全長最大 1100m まで, ロープ径は最大 φ60(0.06m)までとする。	100

- (注) 1. ロープ全長は、取替長さとする。
 - 2. 本工数の適用範囲は、ロープの準備、取外し、現場搬出、積込み、荷下し、現場搬入、取付け、調整、試運転までとし、仮設設置撤去は含まない。
 - 3. ワイヤリングを目視で確認出来る環境であること。

(2) 水密ゴム取替工数

1) 取替工数

取替工数は、次式による。

Y(人/式)=y(人/門)×門数(門)

Y:設備 n 門当りの取替工数 (人/式)

y:設備1門当りの標準取替工数(人/門)

2)標準取替工数

河川用水門の水密ゴム取替工数は、表-2・24のとおりとする。

表-2・24 水密ゴム標準取替工数

区 分	標準取替工数 y:取替工数 (人/門)	摘 要	職種別構成割合(%)
			機械設備据付工
ローラゲート スライドゲート	y = 0.127 x + 3.85	x = 扉体面積 (m2) =純径間 (m) ×有効高 (m) 扉体面積は最大 300m2 までとする。	100

- (注) 1. 現地での取替工数で、河川用水門のみ対象とする。
 - 2. ゴム形式は, P, L, Y, 平ゴムとする。
 - 3. 本工数の適用範囲は、水密ゴムの準備(穴あけ加工、溶着を含む)、取外し、現場搬出、積込み、荷卸し、現場搬入、取付け、調整、試運転、までとし仮設設置撤去は含まない。
 - 4. 扉体の取外し及び取付けは、本工数には含まれていないため、必要な場所は別途積上げるものとする。

(3) 電動機取替工数

1) 取替工数

取替工数は, 次式による。

Y(人/式)=y(人/台)×数量(台)

Y: 電動機 n 台当りの取替工数 (人/式)

y:電動機1台当りの標準取替工数(人/台)

2)標準取替工数

河川用水門の電動機取替工数は、表-2・25のとおりとする。

表-2・25 電動機標準取替工数

区分	y:標準取替工数 (人/台)	摘要	職種別構成割合(%)	
			機械設備据付工	電工
ワイヤロープ ウインチ式開閉装置 の電動機	y = 0.244 x + 1.99	x = モータ容量 (kW) 最大 37kW までとする。	90	10

- (注) 1. ワイヤロープウィンチ式開閉装置の電動機取替に適用する。
 - 2. 適用範囲は、電動機の準備、取外し、現場搬出、積込み、荷卸し、現場搬入、取付け、調整、試運転までとし、仮設設置撤去は含まない。

(4) ローラ取替工数

1) 取替工数

取替工数は, 次式による。

Y(人/式)=y(人/個)×数量(個)

Y:ローラn個当りの取替工数(人/式)

y:ローラ1個当りの標準取替工数(人/個)

2)標準取替工数

河川用水門のローラ取替工数は、表-2・26のとおりとする。

表-2・26 ローラ標準取替工数

区分	y:標準取替工数 (人/個)	摘 要	職種別構成割合(%)
			機械設備据付工
片持式 サドル式	y = 0.0073 x	x = ローラ直径 (mm) ローラ直径は 90mm から最大 1500mm までとする。	100

- (注) 1. プレートガーダ構造ローラゲート又はシェル構造ローラゲートのローラ取替に適用 する。
 - 2. 本工数の適用範囲は、現場における準備、取外し、現場搬出、積込み、荷卸し、現場搬入、取付け、調整、試運転までとし、ローラの整備、仮設設置撤去及び工場における整備のための分解組立は含まない。
 - 3. ローラの取付形式は、片持式又はサドル式を対象とする。また片持式の場合は、ローラ軸の取外し、取付けは含まない。
 - 4. ローラの取付形式は、両持式及びロッカービーム式のローラ取替については、別途 積上げるものとする。

(5) 扉体取外し工数

1) 扉体取外し工数

取外し工数は、次式による。

Y (人/式) = y (人/門) × 門数 (門)

Y:設備 n 門当りの取外し工数 (人/式)

y:設備1門当りの標準取外し工数(人/門)

2) 標準取外し工数

河川用水門の扉体取外し工数は、表 $-2 \cdot 27$ のとおりとする。

表-2・27 扉体標準取外し工数

区 分	y:標準取外し工数 (人/門)	摘要	職種別構成割合(%)
			機械設備据付工
ローラゲート スライドゲート	y = 設備 1 門当りの 標準据付工数×5%	扉体面積は 1m2 から最大 18m2 までとする。	100

- (注) 1. プレートガーダ構造ローラゲート又はプレートガーダ構造スライドゲートの扉体取 外しに適用する。
 - 2. 開閉装置は、スピンドル式又はラック式に適用する。
 - 3. 水密方式は、三方水密、四方水密に適用する。
 - 4. 本工数の適用範囲は、扉体の取外し準備、取外し、現場搬出、積込みまでとし、仮設設置撤去は含まない。

4-3 機械経費

修繕に係る機械経費は、必要に応じて積上げ計上するものとする。

基準の解説

1 直接製作費

1-1 塗装費

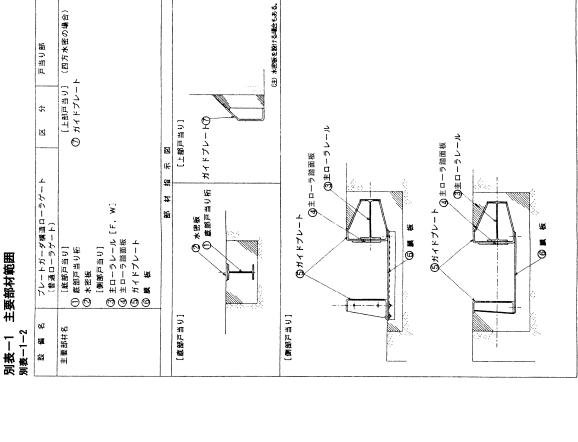
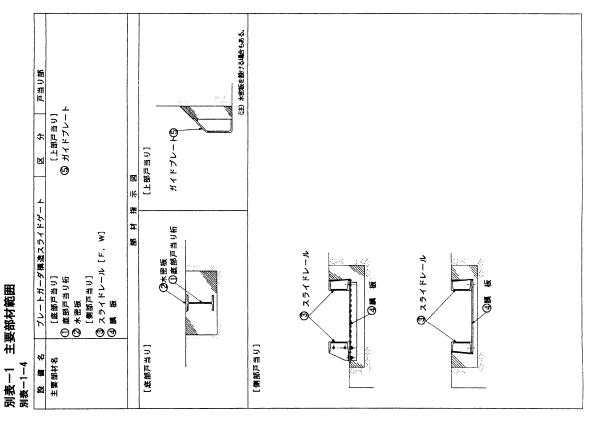

(1) 標準的な構造の水門設備についての塗装面積は、表-1を標準とする。

表-1 標準塗装面積

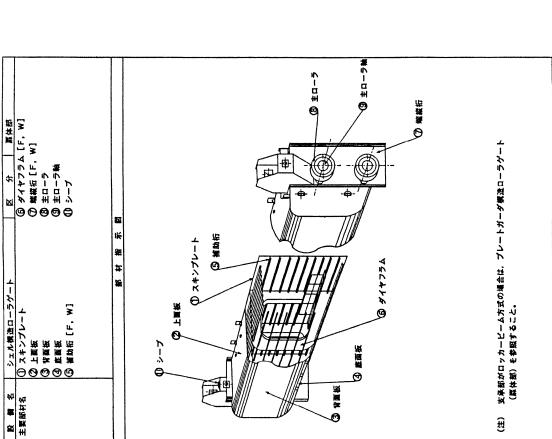

_ 区	分	構成	扉体塗装面積	開閉装置塗装面積	
小形水門	プレートガーダ構造ローラ・ス:	ライドゲート	y=5.4 %		
	プレートガーダ構造ローラゲ	ート	$y = 6.8 \times -12$	$y=0.1 \times +56.7$	
中・	シェル構造ローラゲート	外 面	$y=2.9 \times +109$	0.17 56.7	
大形	フェル構造ロープグ・ト	内 面	$y=9.6 \times -173$	$y=0.1 \times +56.7$	
水門,	プレートガーダ構造ヒンジ式	ゲート			
堰	プレートガーダ構造横引きゲ	ート	プレートガーダ構造ローラゲートによる		
	プレートガーダ構造角落しゲ	ート			
起伏	ゲート		$y=4.1 \times -0.8$	$y = 0.002 \times +2$	
	摘 要		y = 標準塗装面積 (m²) x = 扉体面積 (m²) (純径間 (m) ×有効高 (m))	y = 標準塗装面積 (m²) X = 開閉荷重 (kN) ただし,起伏ゲートの X は 開閉トルク (kNm)	

- (注) 1. 戸当りの塗装面積は、別途積上げるものとする。
 - 2. 開閉装置の塗装面積は, 1M1D, 1M2D, 2M2D の場合に適用するものとする。
 - 3. 管理橋, 防護柵等の塗装面積は, 別途積上げるものとする。
 - 4. ステンレス材の酸洗いが必要な場合は、その面積を別途積上げるものとする。

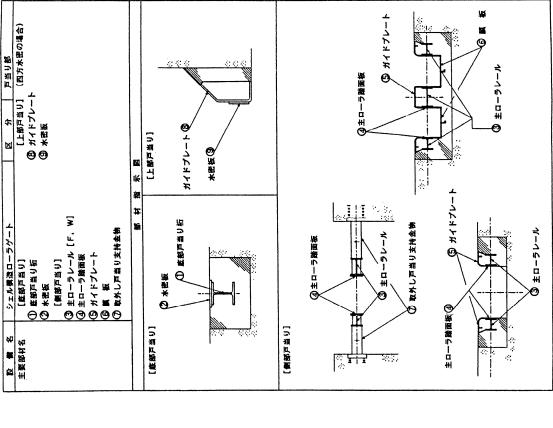
別表一1 主要部材範囲 ^{別表-1-1} 小形水門

別表一1 主要部材範囲 ^{別表—1—3}

R 章 名 ブレートガーダ雑以スライドゲート 区 分 原体部 (1 - w) (2 - 4 - 1 - w) (3 - 4 - 1 - 1 - w) (4 - 4 - 1 - 1 - w) (5 - 4 - 1 - 1 - w) (6 - 4 - 1 - 1 - w) (7 - 1 - w) (7 - 1 - w) (8 - 4 - 1 - w) (9 - 4 - 1 - w) (9 - 4 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - 1 - 1 - 1 - 1 - w) (9 - 4 - 1 - 1 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - 1 - 1 - 1 - w) (9 - 4 - 1 - 1 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - 1 - 1 - w) (9 - 4 - w) (9 - w) (9 - 4 - w) (9 - w) (9

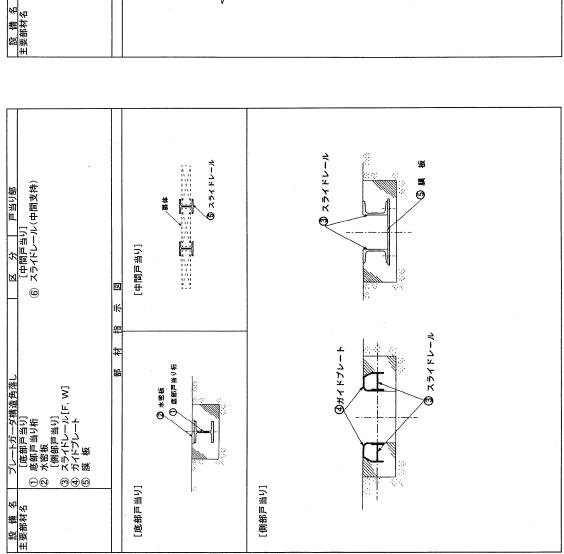

別表-1 主要部材範囲 ^{別表-1-5} 中·大形水門

別表一1 主要部材範囲

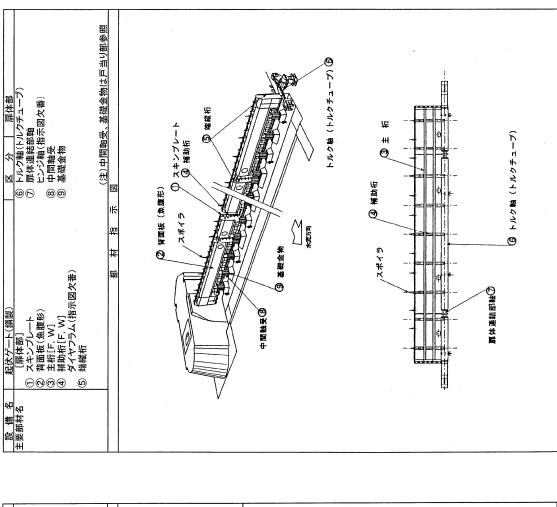

原体部	- A ★ # 1		(1) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4		ħ
*	[ロッカービー ③ ロッカー本件 ④ ロッカー書 ① キローラ ① キローラ			₩ # -4~□ Ø	
ゾレートガーダ素質ローッゲート (普遍ローッゲート)	(四次書)	図 形 葬 女 爺		8	±□-→₩① ③□ッカー₩
イーファー かり 一番 日間中)	000 0000			[ロッカービーム本体]	
超	マ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		よ サインゲン 4 1 - フレング	[ロッカー	

◎≠ローラレール (四方木密の場合) ④ 主□一ラ路面板 ◎ 取外し戸当り支持金物 ④ 丰口一ラ路画板 戸巡り路 [無部戸当りバターン 2] [上郎戸当り] (〇 ガイドプレート 〇 本配板 取外し戸当り支持金物の \$ ガイドブレートの 米田南〇 [上部戸当り] Po P M 部村指示図 ブレートガーダ無池ローラゲート (普通ローラゲート) (4) キローンレール [F, W]
 (5) キローン部回放
 (6) ガイドンレート
 (6) 政イドンレート
 (6) 取入し戸当り支持会等 ① 麻部戸当り桁 ④ 主□一ラ路画板 [重郎戸当リバターン 1] (公主ローラ路画像 ④ 主□一ラ踏画板 ◎キョーランール [原部戸当り] ① 原部戸当り右 ② 木配枝 [奥部戸当り] 0米町瀬 キローラレール キローラレールの ガイドブレート ⑤ ガイドブレート ⑤ ガイドブレートの [原部戸当り] 设备名 主要部村名 別表-1-6

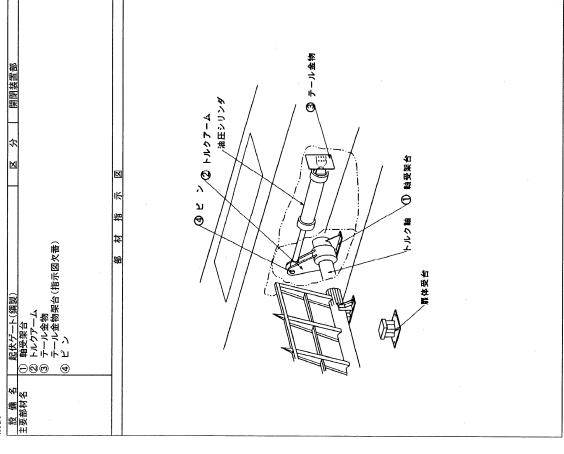
別表一1 主要部材範囲 ^{別表-1-7}

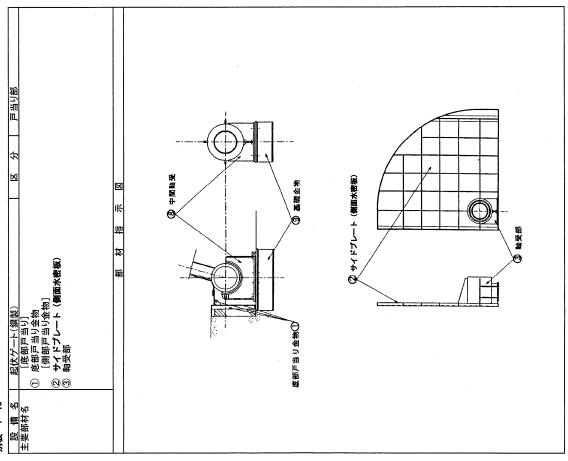


別表一1 主要部材範囲 ^{別表-1-8}



医配液調節 (ワイヤロープシインが対 のシープ のシーブフラケット 9 F36#7 D F36 (>=1. #3) ロットン語 \$ M ⊕ ドラム部 (シェル, ポス, フランジ)
 ② 各ギヤ (ドラムギャ, ピニオンギャ)
 ◎ シーブ部 (シープ, ブラケット, 雑)
 ④ 雑類 (ドラム雑, ギヤ雑, ピニオン雑, トルク雑) 萝甘桔木园 ⑤ 監監被置フレーム [F, W] ローオンギャの ドラムフランジ① 各種ゲート共通 別表-1 主要部材範囲 ^{別表-1-9} ドラム軸 ④ トルク軸 ④ 無配装備フレーA(D) 敬蠢布 主要部材名


別表一1 主要部材範囲 ^{別表-1-11}


別表一1 主要部材範囲 別表-1-12 起伏堰

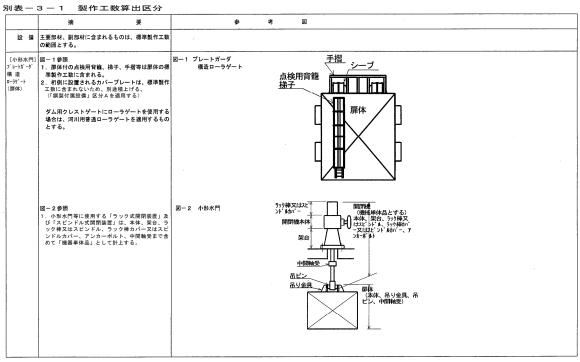
別表一1 主要部材範囲 ^{別表-1-13}

別表-1 主要部材範囲 ^{別表-1-14}

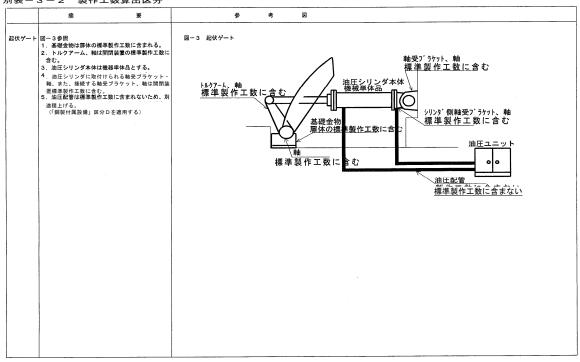
別表-2-1 標準製作工数算定要領

ゲート形式	区分	標準製作工数算定式	χ の 定 義
[小形水門] ブレートガーダ構造 スライドゲート	扉 体	y=3.87 X1+2.19	X1: 原体面積 (㎡) [X1の適用範囲 : ~10㎡] 原体面積 : 経径間 (m) ×有効高 (m) (図-1参照)
(三方四方水密)	戸当り	y=0.59 X 2+2.67	X:: 戸当り延長(m) [X:の適用範囲: 25 m未満] (三方水密の場合) 片側側部戸当り高さ(m)×2+純径間(m) (図-1参照)
			X:: 戸当り延長(m) [X:の適用範囲: 25m未満] (四方水密の場合) 片側側部戸当り高さ(m)×2+純径間(m)×2 (図-1参照)
プレートガーダ構造ローラゲート	扉 体	y=5. 28 \chi_1+0. 35	X: 屏体面積 (㎡) [X:の適用範囲; ~ 10㎡] 厚体面積: 純径間 (m) ×有効高 (m) (図— 1参照)
(三方水密)	戸当り	y=1.53 χ ₂ +3.67	Xz: 戸当り延長(m) [Xzの適用範囲; 25 m未満] 片側側部戸当り高さ(m)×2+純径間(m) (図-1参照)
プレートガーダ構造ローラゲート	屏体	y=5. 23 X1+4. 94	X: 屏体面積 (㎡) [X:の適用範囲; ~10㎡] 原体面積: 純径間 (m) ×有効高 (m) (図-1参照)
(四方水密)	戸当り	y=1.71X2+0.38	X2: 戸当り延長(m) [X2の適用範囲: 25m未満] 片側側部戸当り高さ(m) × 2 + 純径間(m) × 2 (図-1参照)
			図-1 小形水門 ブレートガータ構造ローラゲート
	-		转横
			「
			海 体 有効素(を) (6) (6) (6) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7
			# # # # # # # # # # # # # # # # # # #
			<u>↓</u> <u>↓ ↓ ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± </u>
			「下部戸当り長(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下部戸当り日本(m) 「下来下記)「下来下来下来下来下来下来下来下来下来下来下来下来下来下来下来下来下来下来下来

別表一2一2 標準製作工数算定要領


ゲート形式	区分	標準製作工数算定式	χ の 定 義
[中・大形水門. 堰] プレートガーダ構造 ローラゲート	扉 体	y=6. 88 X i - 15	X: 原体面積 (㎡) [X:の適用範囲:10㎡~300㎡] 原体面積: 純怪間 (ო) ×有効高 (ო) (図-1参照)
(三方水密)	戸当り	y=6.58 X2-75	X:: 戸当り延長(m) [X:の適用範囲: 15 m~85 m] 片側側部戸当り高さ(m)×2+段径間(m) (図ー1参照)
プレートガーダ構造 ローラゲート (四方水密)	扉 体	X: - 屏体面積 (㎡) [X:の適用範囲:10㎡~80㎡] 原体面積: 純径間 (m) ×有効高 (m) (図-1参照)	
(四月水田)	戸当り	y=5. 42 X 2-66	X: 戸当り延長 (m) [X:の適用範囲: 15m~65m] 片側側部戸当り高さ (m) ×2+純径間 (m) ×2 (図-1参照)
			図一1 ブレートガータ構造ローラゲート
			三方水密ゲート 四方水密ゲート
			経構造門当り高さ 片側側部門当り高さ 「片側側部門当り高さ 「大側側部門当り高さ 「大側側部門当り高さ 「大側側部門当り高さ 「大側側部門当り高さ 「大側側部門当り高さ

別表-2-3 標準製作工数算定要領


別表一2-3	標準製作工	以昇疋安禎	
ゲート形式	区 分	標準製作工数算定式	χ の 定 義
[中・大形水門,堰] シェル構造ローラゲート	屏 体	y= 1 1. 47 X1-23. 6	X: 屏体面積 (m') [X:の適用範囲: 20m'~300m'] 屏体面積: 純径間 (m) × 有効高 (m) (図-2参照)
	戸当り	y=10.49 X ₂ -206	X:: 戸当り延長 (m) [X:の適用範囲:30m~90m] 片側側部戸当り高さ (m) ×2+純径間 (m) (図-2参照)
			図-2 シェル構造ローラゲート
			ھ
			「
			当り高さり高さり、数高

別表-2-4 標準製作工数算定要領

ゲート形式	区分	標準製作工数算定式	χ の 定 義
	扉 体	y=7. 94 X ₁ -1	X::
	戸当り	y=4. 57 X2-10	X:: 戸当り延長 (m) [X:の適用範囲: 7 m~3 5 m] 片側側部戸当り高さ (m) × 2 +純怪間 (m) (図-3 参照)
			図-3 起伏ゲート
			片側側部戸当り高さ
	開閉装置	y=0. 05 X ₃ +11. 97	X ₁ : 開閉トルク(k Nm)

別表-3-2 製作工数算出区分

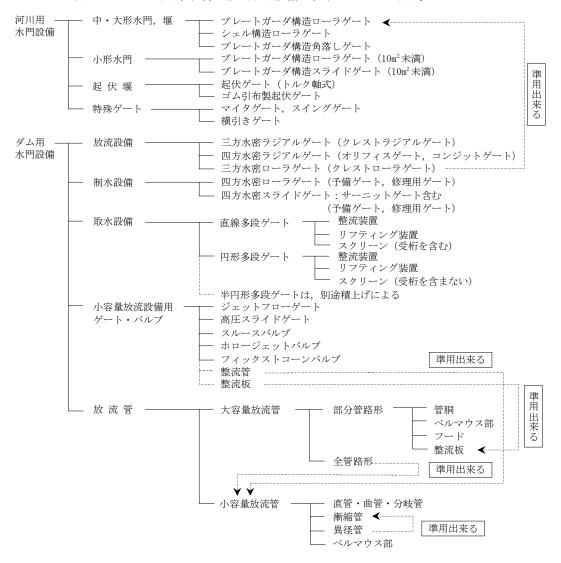
② ダム用水門設備

1 適用範囲

この基準は、ダム用水門設備の製作、据付けに適用する。

1-1 区分及び構成

水門設備の区分及び構成は、表 $-2 \cdot 28$ のとおりとする。


表-2・28 区分及び構成

	区 分			構成				
放	流	設	備	扉体,戸当り,開閉装置,基礎材,空気管,充水装置,操作制御設備等				
制	水	設	備	扉体,戸当り,開閉装置,基礎材,空気管,充水装置,操作制御設備等				
取	水	設	備	扉体, 戸当り, 開閉装置, 整流装置, スクリーン, 取水塔, 操作制御設備等				
放流管	大容	量放		フード、ベルマウス、管胴、整流板等				
管	小容	量放		ベルマウス,直管,曲管,漸縮管,異径管,分岐管等				
小容量放流設備用 ゲート・バルブ				扉体又は弁体,ボンネット,ケーシング又は弁胴,ボンネットカバー,開閉装置,空気管,充水装置,操作制御設備等				
付 属 設 備 操作橋,管理橋,階段,手摺等								

- (注) 1. 制水設備とは、予備水門扉又は修理用水門扉に使用されるプレートガーダ構造のローラゲート、スライドゲート(サーニットゲートを含む)をいう。
 - 2. 取水設備とは、円形多段及び直線多段ゲートをいう。
 - 3. 大容量放流管とは、ダムの放流設備の上流部に設けられる矩形断面を有する管路及び下流部に設けられる整流板等をいう。
 - 4. 小容量放流管とは、円形断面を有する取水設備、小容量放流設備用水圧鉄管及び発電用水圧鉄管をいう。
 - 5. ダム用水門設備にリーン二相鋼(SUS821L1, SUS323L) 又はスーパー二相鋼(SUS327L1) 等の新材料を使用した設備には適用出来ないので、別途積上げるものとする。
 - 6. 水門設備に付随する,管理橋,階段,防護柵等の付属設備の製作据付は,「第 18 章 鋼製付属設備」によるものとする。

1-2 区分の解説

表 $-2 \cdot 28$ における、区分に該当する設備は以下のとおりとする。

- ① 河川用水門設備とダム用水門設備に区分されているが、構造が同じであれば、相互に準用出来る。
- ② ダム用水門設備の制水設備は、「水圧バランス操作方式の水門」「流水遮断が可能な水門」のどちらにも適用可能である。
- ③ ダム用水門設備の放流設備において、クレストゲート等に三方水密ローラゲートを使用する場合は、河川用水門のプレートガーダ構造ローラゲートを準用出来るものとする。
- ④ ダム用水門設備の放流設備において四方水密ローラゲートを使用する場合は、制水設備の四方水密ローラゲートを準用出来るものとする。
- ⑤ 小容量放流設備用ゲート・バルブに設置する整流管は、小容量放流管を準用出来るものとする。
- ⑥ 小容量放流設備用ゲート・バルブに設置する整流板は、大容量放流管の整流板を準用出来るものとする。
- ⑦ 大容量放流管に円形断面の全管路形を使用する場合は、「小容量放流管」を準用出来るものとする。
- ⑧ 小容量放流設備用ゲート・バルブ等に設置する「異径管(円形断面から矩形断面等の径の断面が異なる管)」は、漸縮管を準用出来るものとする。
- ⑨ 側壁付円形多段ゲートの扉体、整流装置、開閉装置は、円形多段ゲートを準用出来るものとする。
- (注) 上記について、構造上特に異なるものには別途積算するものとする。

2 直接製作費

2-1 材料費

(1) 材料費の構成は、次のとおりとする。

材料費=主要部材費+副部材費+部品費+補助材料費

(2) 主要部材費

1) 主要部材費の積算は、次式による。

主要部材費=主要部材所要量×主要部材単価

なお、各区分毎の主要部材の範囲は、表-2・29のとおりとする。

- 2) 主要部材の所要量の算定及び主要部材単価は, 「第 1 章 一般共通 ⑤ 1 1-1 (1) 1) 直接材料費」に準ずる。
- 3) 鋼材単価に関するエキストラは、必要に応じて計上するものとする。
- 4) 主要部材には水密ゴム押え金物,クサビは含まれない(副部材に含まれる)。
- 5) 円形多段ゲートの主要部材には、シーブブラケットが含まれるが、その他のゲートについては 副部材に含まれる。

(3) 副部材費

1) 副部材費の積算は、次式による。

副部材費=主要部材費×副部材費率(%)

なお、各区分毎の副部材の範囲は、表 $-2 \cdot 29$ のとおりとする。

また、副部材費率は、表 $-2 \cdot 30$ によるものとする。

- 2) プレートガーダ構造のゲートのカバープレートは、副部材料費率に含まれないため、所要量を 副部材費として別途積上げるものとする。
- 3) 四方水密ラジアルゲートの開閉機は油圧シリンダ式開閉装置であり、副部材費率には油圧配管 は含まれていないため、所要量を副部材費として別途積上げるものとする。

表-2・29 主要部材・副部材範囲

	D.		分		主要・副音	邪材の範囲	
	区		9J		主要部材(所要量を積上げる部材)	副部材(副部材費率に含まれる部材)	
放流設備	三方水密 ラジアル ゲート			体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W), シーブ部 (シーブ), 脚柱 (F, W), 脚柱間トラス (F, W), トラニオンハブ (F, W, トラニオンボス), トラニオンピン (主軸)	原体を構成する主要部材以外の部材(シーブ軸,サイドローラ,点検用梯子,手摺,歩廊滑り止め,開度計取付金物,非常上限検出金物取付材等を含む)	
	戸当				敷金物 (敷金物桁, 敷金物ゴム当り) 側部戸当り金物 (側部戸当りゴム当り, 裏桁)	戸当りを構成する主要部材以外の部材	
	開 閉 装 置 ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F・W)			置	ピニオン,シーブ部 (シーブ,ブラケット,軸),軸類 (ドラム軸,ギヤ軸,ピニオン軸,	開閉装置を構成する主要部材以外の部材(オイル受け,ギヤ等のカバー,大形開閉装置等に設ける開閉装置付の点検用梯子を含む)	
スプレート), トラニ オンガーダ, ガーダ有 ラム), テンションビ コンプレッションビー		ペデスタル部 (トラニオンブラケット, ベースプレート), トラニオンガーダ部 (トラニオンガーダ, ガーダ補助桁, ガーダダイヤフラム), テンションビーム部 (F, W, 支圧板), コンプレッションビーム部 (F, W, 支圧板), スラスト受台 (スラスト受板)	基礎材を構成する主要部材以外の部材(マンホール等を含む)				
	四方水密 ラジアル ゲート	ラジアル		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W), 脚注 (F, W), 脚間補剛材 (F, W), 脚ブレース (F, W), トラニオンハブ (F, W, トラニオンボス), トラニオンピン (主軸)	扉体を構成する主要部材以外の部材(サイドローラ、点検用梯子,手摺,歩廊滑り止め,開度計取付金物,非常上限検出金物取付材,セクトヒータ取付座等を含む)	

					主要・副岩	(つつき) 部 材 の 範 囲	
	区		分		主要部材(所要量を積上げる部材)	副部材(副部材費率に含まれる部材)	
放流設	四方水密 ラジアル ゲート	戸 当 り			敷金物(桁,受台),空気箱(ボックス,端面板),側部戸当り金物(ゴム当り,裏桁),上部戸当り金物(取付部,噴流防止ゴム取付座)	戸当りを構成する主要部材以外の部材 (空気 箱部のスティフナ,ドレンパイプ等を含む)	
備		開	閉装	置	軸受部ブラケット、休止装置	開度計架台等	
		基	礎	材	ペデスタル部 (トラニオンブラケット),トラニオンガーダ部 (トラニオンガーダ,補助桁,ダイヤフラム),テンションビーム (F,W),テンションビーム支圧板 (F,W),PC部(シース管,アンカプレート)	基礎材を構成する主要部材以外の部材 (マンホール等を含む)	
制水設備	四方水密 ローラゲ ート	扉		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W), 主ローラ部 (主ローラ, 軸), シーブ部 (シーブ)	扉体を構成する主要部材以外の部材(シーブ軸,サイドローラ,扉体付点検用梯子,手摺等を含む)	
備		戸	当	ŋ	敷金物(桁,水密板),側部戸当り金物(主ローラレール,ローラ踏面,水密部,ガイドプレート,ガイドローラレール,膜板),上部戸当り金物(水密部,ガイドプレート)	戸当りを構成する主要部材以外の部材	
		開閉装置			ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F・W)	開閉装置を構成する主要部材以外の部材(オイル受け,ギヤ等のカバー,大形開閉装置等に設ける開閉装置付の点検用梯子を含む)	
	四方水密 スライド ゲート	扉		体	スキンプレート, 主桁 (F, W), 補助桁 (F, W, ダイヤフラム F, W), 端縦桁 (F, W, ガイドシュー, 支圧板), シーブ部 (シーブ)	原体を構成する主要部材以外の部材 (シーブ軸, 扉体付点検用梯子, 手摺等を含む)	
		戸	当	ŋ	敷金物(桁、水密板)、側部戸当り金物(レール、支圧板、水密板、ガイドプレート、ガイドローラレール、膜板)、上部戸当り金物(水密部、ガイドプレート)	戸当りを構成する主要部材以外の部材	
		開			ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F・W)	開閉装置を構成する主要部材以外の部材(オイル受け,ギヤ等のカバー,大形開閉装置等に設ける開閉装置付の点検用梯子を含む)	
取水設備	直線多段ゲート	扉 体			スキンプレート, 主桁 (F, W), 補助桁 (F, W), 端縦桁 (F, W), 吊桁部 (吊桁 F, W), 主ローラ部 (主ローラ, 軸), シーブ部 (シーブ)	原体を構成する主要部材以外の部材(シーブ軸, 扉体付点検用梯子, 手摺等を含む)	
		戸	当	り	敷金物(敷金物桁,敷金物ゴム当り),戸当り金物(主ローラレール F・W,ゴム当り,膜板,基礎金物)	戸当りを構成する主要部材以外の部材	
		整	流装	置	整流板(上面板・側面板・下面板各 F, W)	整流板 (補助桁,継ぎ手材,裏当て材),手摺等	
		リ装	フティン	⁄ グ 置	主桁 (F, W), 補助桁 (F, W), シーブ部 (ブ ラケット F, W, シーブ), テンションロッド	リフティング装置を構成する主要部材以外 の部材(取水深変更装置,戸当りガイド・取 付材,手摺等を含む)	
		開	閉装	置	ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F・W)	開閉装置を構成する主要部材以外の部材(オイル受け,ギヤ等のカバー,大形開閉装置等に設ける開閉装置付の点検用梯子を含む)	
		ス	クリー	・ン	パネル部 (スクリーンバー, 綴りバー, ディ スタンスピース) 受桁 (F, W)	パネル部(止め金具, ヒンジ, 取付板), スクリーン受け台等	

	F	/\	主要・副き	部材の範囲	
	区	分	主要部材(所要量を積上げる部材)	副部材(副部材費率に含まれる部材)	
取水設備	円形多段ゲート	扉 体	管胴部(管胴呑口部,管胴,リングガーダ) ハンガー掛金物部(掛金物,ブラケット), ガイドローラ部(ガイドアーム F, W,ブラ ケット,ローラ,軸)シーブ部(シーブ,ブ ラケット)	原体(管胴)を構成する主要部材以外の部材 (シーブ軸,ハンガー掛金物部のキープレー ト等を含む)	
		戸 当 り			
		開閉装置	ドラム (シェル, フランジ, ボス), 各ギヤ, ピニオン, シーブ部 (シーブ, ブラケット, 軸), 軸類 (ドラム軸, ギヤ軸, ピニオン軸, トルク軸), 開閉装置フレーム (主桁 F, W)	開閉装置を構成する主要部材以外の部材(オイル受け,ギヤ等のカバー,大形開閉装置等に設ける開閉装置付の点検用梯子を含む)	
		整流装置	整流板 (コーン,上面板・側面板・下面板各 F, W)	整流板 (補助桁,継ぎ手材,裏当て材),手 摺等	
		リフティング 装 置	主桁 (F, W), 補助桁 (F, W), シーブ部 (ブラケット F, W, シーブ), テンションロッド	リフティング装置を構成する主要部材以外 の部材(取水深変更装置,戸当りガイド・取 付材,手摺等を含む)	
		取 水 塔	支柱 (F, W) , 水平桁 (F, W) , 補助桁 (F, W) , 床板部 $(床板, 床桁)$	取水塔を構成する主要部材以外の部材(スク リーン受け台を含む)	
		スクリーン	パネル部 (スクリーンバー, 綴りバー, ディ スタンスピース)	パネル部(止め金具、ヒンジ、取付板)等	
放流管	大容量放 流管	管 胴ベルマウス	管胴部(管胴板, フランジ, リングガーダ, スティフナ)	管胴部(吊フック,ジベル,ガセットプレート,裏当て金,止水板)内部支保工等	
		フ ー ド	上面板,底面板,側面板	吊フック、スティフナ等	
		整 流 板	底面板、側面板、フランジ、リングガーダ	ジベル,スティフナ,エンドプレート,内部 支保工等	
	小 容 量	量 放 流 管	管胴部(管胴板,フランジ,リングガーダ, スティフナ)	管胴部(吊フック, ジベル, ガセットプレート, 止水板)等	
小宏	ジェット	扉 板 構 造	ゲートリーフ, 摺動板	扉体を構成する主要部材以外の部材	
容量放流	フローゲート	体 析 構 造部	スキンプレート, 主桁 (F, W), 端縦桁 (F, W), 縦桁 (F, W), ステムボス, 摺動板	扉体を構成する主要部材以外の部材	
設備用ゲート		ケーシング部	漸拡管,漸拡管フランジ,ケーシング胴板,ケーシング F,ケーシング水平桁 (F, W),コニカルノズル,シールリング,シールリング押え,支圧板	ケーシングスティフナ等	
・バルブ		ボンネット部	ボンネット胴板, ボンネットフランジ, ボンネット水平桁 (F, W), 支圧板	ボンネットスティフナ,縦桁,吊り金物,脚等	
		ボンネット カ バ ー 部	ボンネットカバー (F, W)	ボンネットカバースティフナ, パッキン押え 等	
	高圧スラ	扉 板 構 造	ゲートリーフ, 摺動板	扉体を構成する主要部材以外の部材	
	イドゲート	体 構造	スキンプレート,側板 (F, W), 主桁 (F, W), 端縦桁 (F, W),縦桁 (F, W), ステムボス, 摺動板	扉体を構成する主要部材以外の部材	
		ケーシング部	ケーシング胴板,ケーシングF,ケーシング水平桁 (F, W),支圧板	ケーシングスティフナ等	
		ボンネット部	ボンネット胴板, ボンネットF, ボンネット 水平桁 (F, W), 支圧板	ボンネットスティフナ,縦桁,吊り金物,脚等	

	区分		^	主 要 ・ 副 部 材 の 範 囲			
			N	主要部材(所要量を積上げる部材)	副部材(副部材費率に含まれる部材)		
小容量	小 高圧スラ ボ i 容 イドゲート カ		ンネット バ ー 部	ボンネットカバー (F, W)	ボンネットカバースティフナ, エア抜き管, パッキン押え, 空気管 F, 空気管座板等		
放流	スルース	扉	板構造	ゲートリーフ, 摺動板	扉体を構成する主要部材以外の部材		
小容量放流設備用ゲー	バルブ	体部	桁構造	スキンプレート, 側板 (F, W), 主桁 (F, W), 端縦桁 (F, W), 縦桁 (F, W), ステムボス, 摺動板	扉体を構成する主要部材以外の部材		
ト・バ		ケー	ーシング部	ケーシング胴板,ケーシングF,ケーシング水平桁(F,W),支圧板	ケーシングスティフナ等		
ルブ		ボン	ンネット部	ボンネット胴板, ボンネット F, ボンネット 水平桁 (F, W), 支圧板	ボンネットスティフナ,縦桁,吊り金物,脚等		
		ボンネット カ バ ー 部		ボンネットカバー (F, W)	ボンネットカバースティフナ, エア抜き管, パッキン押え等		

- (注) 1. 表中「F」はフランジ,「W」はウェブを示す。
 - 2. 開閉装置にラック式・スピンドル式開閉機を使用する場合は、機器単体品として計上し、副部材費、部品費の計上は行わないものとする。
 - 3. ダム用水門設備の, 充水装置, 空気管については, 別途積算するものとする。
 - 4. 油圧シリンダ式開閉装置の油圧配管の材料費は、副部材費率に含まれないため、所要量を副部材費として別途積上げるものとする。
 - 5. 付属設備については、別途積算するものとする。

(4) 部品費

部品費の積算は、次式による。なお、部品費率は、表 $-2 \cdot 30$ によるものとする。

部品費=主要部材費×部品費率(%)

また、部品費率に含まれる部品の品目は、次のとおりとする。

各種軸受 (オイルレスベアリング, ピローユニット), 水密ゴム, オイルシール, 各種スイッチ, 各種リレー, 軸継手, チェーン, スプロケット, ボルト・ナット等

表-2・30 扉体・戸当り・基礎材 副部材費率及び部品費率

(%)

	区	分	副部材費率	部品費率	備考
放	三方水密ラジアルゲート	扉 体	11.5	30.0	
流		戸当り	3.5	5. 0	
設		開閉装置	26.0	38. 0	表-2・31 補正係数を乗ずる
備		基礎材	19.0	31.0	
	四方水密ラジアルゲート	扉 体	14.5	42. 5	
		戸当り	14.0	27. 5	
		開閉装置	5.0	17. 0	
		基礎材	23.0	23. 5	
制	四方水密ローラゲート	扉 体	20.0	24. 0	
水		戸当り	9.0	1. 0	
設		開閉装置	22.0	24. 0	表-2・31 補正係数を乗ずる
備	四方水密スライドゲート	扉 体	24.0	39. 5	
		戸当り	9.0	1. 0	
		開閉装置	22.0	24. 0	表-2・31 補正係数を乗ずる
取	直線多段ゲート	扉 体	12.5	21. 5	
水		戸当り	14.5	0. 5	
設		開閉装置	22.0	24. 0	表-2・31 補正係数を乗ずる
備		スクリーン	1.5	0. 5	
	円形多段ゲート	扉 体	11.5	15. 5	
		戸 当 り	取水塔	に含む	
		開閉装置	22.0	24. 0	表-2・31 補正係数を乗ずる
		取 水 塔	12.0	1.0	
		スクリーン	4.0	1. 0	
	整 流 装	置	5. 5	18. 0	
	リ フ テ ィ ン	グ装置	16.0	23. 0	
放	大 容 量 放	流管	2.0	0.5	
放流管	大容量放流管(雪	整流板)	8.0	0.5	
	小 容 量 放	流管	3.5	0.5	
小容量	ジェットフロー	ゲート	5.0	11.5	
小容量放流設備用	高圧スライド	ゲート	5. 0	12. 5	
備 用	ス ル ー ス バ	ルブ	5.0	11. 5	

- (注) 1. 放流設備の四方水密ラジアルゲートの開閉装置は、油圧シリンダ式であり、放流設備の三方水密ラジアルゲート、制水設備、取水設備はワイヤロープウインチ式である。
 - 2. 油圧シリンダ式開閉装置において、シリンダ軸受 (ころがり軸受、すべり軸受) については、部品費率に含まれないため、部品費として所要量を積上げるものとする。

また,油圧配管の材料費は,副部材費率,部品費率に含まれないため,所要量を副部材として別途積上げるものとする。

- 3. 開閉装置にラック式・スピンドル式開閉機を使用する場合は機器単体品とし、副部 材費, 部品費は計上しないものとする。
- 4. 四方水密ラジアルゲート以外の開閉装置(ワイヤロープウインチ式)は、次式により開閉装置の副部材費率、部品費率の補正を行うものとする。

副部材費率=副部材費率×F1×F2

部品費率=部品費率×F1×F2

「F1:休止装置の有無による補正係数

F2:ドラム直結式(オープンギヤ無し)補正係数

なお,補正係数は,表-2・31による。

表-2・31 ワイヤロープウインチ式開閉装置補正係数 (F1, F2)

補正の種別		補 正	係 数
休止装置の有無による補正係数	F1	休止装置有り 1.00	休止装置無し 0.75
ドラム直結式の補正係数	F2	ドラム直結式 1. 25	その他 1.00

- (注) ドラム直結式とは、オープンギヤ等による減速を行わず、減速機のみにより減速し、カウンタシャフト等を介し、ドラムを直接駆動する構造とする。
 - 5. 円形多段ゲートの取水塔は、独立塔形式及び堤体支持形式を標準とする。
 - 6. 扉体の全主要部材にステンレス鋼及びステンレスクラッド鋼を使用する場合は、扉体の副部材及び部品所要量は別途積上げるものとする(ただし、円形多段ゲートは除く)。

(5) 補助材料費

補助材料費の積算は,次式による。

補助材料費=(主要部材費+副部材費)×補助材料費率(%)

なお、補助材料費率は、表-2・32によるものとする。

表-2・32 補助材料費率 (%)

区	分	補助材料費率
放流設備	三方水密ラジアルゲート	
////////////////////////////////////	四方水密ラジアルゲート	
制水設備	四方水密ローラゲート	
的1/八章文7用	四方水密スライドゲート	
取水設備	直線多段ゲート	10.0
AX/N DX VIII	円形多段ゲート	
放流管	大容量放流管	
<i>从</i> X / ル 旨	小容量放流管	
小容量放流設備用ゲート・バルブ	すべて	

(6) 据付架台の材料費の算出

据付架台(設備据付けに際し工場製作されコンクリート等に埋設されるもの)のうちダム用放流設備に設置される「大容量放流管」「小容量放流管」「四方水密ラジアルゲート基礎材架台」の直接材料費は、次式による。

直接材料費=据付架台質量(kg)×構成する代表単価

据付架台質量及び構成する代表単価は、表-2・33を標準とする。

表-2・33 据付架台質量及び構成する代表単価

区 分	据付架台標準質量 算定式	構成する代表単価 (円/kg)	摘 要
大容量放流管	y=63.8x+17,185	SS H200×200 単価	y: 質量 (kg) x:容量 (m³) = (下流端高+上流端高) /2×長さ×幅
小容量放流管	y=30.5x+3,688	SS L75×75×9 単価	y: 質量 (kg) x: 容量 (m³) = (下流端高+上流端高) /2×長さ×幅
四方水密ラジアル ゲート基礎材架台	y=6.24x	SS H200×200 単価	y:質量 (kg) x: 扉体面積 (m²) ×設計水深 (m)

2-2 機器単体費

(1) 機器単体費として計上する品目は、次のとおりとする。

電動機,原動機,減速機,クラッチ,制動機,油圧シリンダ,油圧ユニット,油圧ポンプ,油圧モータ,自動ろ過装置,パワーシリンダ,スピンドル式開閉機,ラック式開閉機,バルブ駆動装置,集中給油装置,ワイヤロープ,ワイヤ弛過負荷検出装置,開度計,電気防食用流電陽極,自家発電装置,始動用抵抗器,速度制御用抵抗器,自動制御機器,監視操作盤類,接続端子盤,凍結防止装置,計装機器,水位測定装置,流量測定装置,天井走行クレーン,ホイスト,チェーンブロック,弁及び管継手等

- (2) 凍結防止装置 (鋼管発熱式) 工事,シャッター工事,PC鋼棒・鋼線工事
 - 1) 凍結防止装置(鋼管発熱式)工事

凍結防止装置(鋼管発熱式)の製作費は、見積りによるものとし、材料費、労務費、間接労務費、工場管理費、一般管理費を含む一式を機器単体費として計上する。

なお、設計技術費及び一般管理費等の算定時の取扱いは、機器単体費と同様とする。

2)シャッター工事

積雪寒冷地域等で,小容量放流設備用ゲート・バルブ下流側にシャッターを設置する場合,製作費は,見積りによるものとし,材料費,労務費,間接労務費,工場管理費,一般管理費を含む一式を機器単体費として計上する。

なお、設計技術費及び一般管理費等の算定時の取扱いは、機器単体費と同様とする。

3) PC鋼棒・鋼線工事

PC鋼棒・鋼線工事の製作費は、見積りによるものとし、材料費、労務費、間接労務費、工場管理費、一般管理費を含む一式を機器単体費として計上する。

なお、設計技術費及び一般管理費等の算定時の取扱いは、機器単体費と同様とする。

2-3 製作工数

(1) 製作工数は、次式による。

$Y = y \times Km \times Ks \times Kh \times Kn$

Y:製作区分毎1門当りの製作工数(人/門)

y:製作区分毎1門当りの標準製作工数(人/門)

Km:使用材料による補正係数

Ks:構造による補正係数

Kh: 水深による補正係数

Kn: 製作数による補正係数

(2) 標準製作工数

1) 水門

水門の標準製作工数は、表-2・34とする。

表-2・34 標準製作工数

		区 分	扉 体	戸当り	開閉装置	基礎材
ダム用	放流設備	三方水密ラジアルゲー	$y=8.33 \times +10$	$y=0.83 \times +18$	(1M1D) y=6.64 χ 0.6388 (1M2D) y=2.74 χ 0.8016 (2M2D) y=34.8 χ 0.4368	$y=3.35 \times -75$
水		四方水密 ラジアルゲー]	$y = 40.6 \times -80$	$y=3.38 \times +134$	$y=0.01 \times +113$	$y = 7.39 \times +82$
門設	制水設備	四方水密 ローラゲート	y=15.0 x +62	$y=6.77 \times -21$	(1M1D) $y=26.6 \chi^{0.5094}$ (1M2D) $y=2.74 \chi^{0.8016}$	
備		四方水密 スライドゲー 〕	$y = 12.0 \times +49$	$y=6.77 \times -21$	(1M1D) $y=26.6 \chi^{0.5094}$ (1M2D) $y=2.74 \chi^{0.8016}$	
	摘	要	三方水密 ラジアルゲート エ:扉体面積 (60~200m²) (純径間(m)×扉高(m))	三方水密 ラジアルゲート 2: 戸当り延長 (20~60m) (片側扉体円弧長(m) ×2+純径間(m))	三方水密 ラジアルゲート ^ス :開閉荷重(kN)	三方水密 ラジアルゲート ² : 扉体面積 (60~200㎡) (純径間(m)×扉高(m))
			四方水密 ラジアルゲート 2:扉体面積 (6~50m²) (純径間(m)×扉高(m)) 表-2・45 補正係数を 乗ずる。	四方水密 ラジアルゲート 2: 戸当り延長 (20~50m) (片側扉体円弧長(m) ×4+純径間(m)×2) 表-2・45 補正係数を 乗ずる。	四方水密 ラジアルゲート ^ス :開閉荷重 (kN) ×シリンダストロー ク長 (m) (490~26,000kNm)	四方水密 ラジアルゲート 2: 扉体面積 (6~50m²) (純径間(m)×扉高(m)) 表-2・45 補正係数を 乗ずる。
			四方水密ローラゲート 四方水密 スライドゲート 2: 扉体面積 (7~75㎡) (純径間(m)×扉高(m)) 表-2・45 補正係数を 乗ずる。	四方水密ローラゲート 四方水密 スライドゲート : 戸当り延長 (15~140m) (片側側部戸当り 高さ (m) ×2+純径間 (m) ×2) 表-2・41 及び 45 補正 係数を乗ずる。	四方水密ローラゲート 四方水密 スライドゲート ス:開閉荷重 (kN) 表-2・42 及び 43 補正 係数を乗ずる。	

- (注) 1. y は標準製作工数 (人/門, 門分, 基), χ は摘要に記載している 1 門当りの各々の要素である。
 - 2. 標準製作工数に含む内容は、次のとおりである。

なお,標準製作工数は,材料費に示す「主要部材」,「副部材」の範囲がすべて含まれる。

ゲート形式毎の構成 (扉体、戸当り、基礎材、開閉装置) の製作工数

- (1) 扉体 扉体及び扉体付点検梯子・手摺・歩廊等。
- (2) 戸当り 戸当り及び戸当りに設置される空気箱等。
- (3) 開閉装置 (注) 7. による。
- (4) 基礎材 基礎材及びトラニオンピン等の硬質クロムメッキ加工等。
- 3. 四方水密ローラゲート及び四方水密スライドゲート戸当りは、構造補正を行うものとし、補正係数は、表 $-2 \cdot 41$ による。
- 4. ダム用水門の放流設備及び制水設備は、水深による補正を行うものとし、補正係数は、表-2・45による。

- 5. ダムのクレストゲートにローラゲートを使用する場合は、河川用水門設備の中・大形水門(プレートガーダ構造ローラゲート)を適用する。
- 6. 特殊ゲートの工数は、下記のとおりとする。
 - (1) 起伏ゲート付の場合は起伏ゲートの工数を,下段扉はその形式のゲートの工数を求め合算する。
 - (2) 全アルミニウム製,全鋳鉄製の水門(扉体)は、別途積上げる。
 - (3) 「直線多段ゲート」+「保安ゲート」の場合は、直線多段ゲート工数に保安ゲート(一般的にフラップゲートであるが、起伏ゲートを準用する)の工数を合算する。
 - (4) 制水設備のローラゲート又はスライドゲートの扉体に取付けられるリフティングビームは、 別途積算するものとする。

7. 開閉装置の標準製作工数

- (1) 1M1D, 1M2D, 2M2D 開閉装置は、ドラムをオープンギアで減速駆動する方式で、休止装置が設けられるものを標準とする工数であり、標準以外のものは、補正するものとする。 なお、制水設備の開閉装置は揚程が20m以内のものを標準とする工数であり、標準以外のものは補正するものとする。
- (2) 放流設備の四方水密ラジアルゲートの開閉装置は、油圧シリンダ式の場合であり、放流設備の三方水密ラジアルゲート、制水設備はワイヤロープウインチ式の場合である。
- (3) 標準製作工数に含む内容は、次のとおりである。

開閉装置毎の製作工数

- 1) ワイヤロープウインチ式 ・・・・・開閉機全体,大形開閉装置付の点検梯子等。
- 2) 油圧シリンダ式(起伏ゲート)・・・・トルクアーム等。
- 3) 油圧シリンダ式(四方水密ラジアルゲート)・・軸受部ブラケット,休止装置,開度計架台,油圧配管(ただし,異なるユニットを連結するためのものは別途積算するものとする)。
- 8. 下記については標準製作工数に含まれないため別途積算するものとする。
 - (1) 開閉装置の点検設備(オーバーブリッジ形の通路, 転向シーブ点検架台), ロープダクト, 油圧開閉装置のシリンダフレーム等。
 - (2) ガントリクレーン形式の開閉装置。
 - (3) 空気管, 充水装置。
 - (4) ダム堤体下流側に設置される四方水密ローラゲート基礎材。
 - (5) 据付架台(設備の現地据付等に際して使用する架台で、工場製作され埋設するもの)。
 - (6) 組立架台 (工場製作され一時的に設備を支持する架台等で埋設されないもの) (「3 3-5 (4)組立架台」による)。

2) 放流管

放流管の標準製作工数は、表-2・35とする。

表-2・35 標準製作工数

	製 作 区 分				標準製作工数	摘 要
放	大灾	管		胴	$y=4.72 \times +223$	α:体積 (25~400 m³)
流	容量放流管	ベル	マウス	部	$y=5.94 \times +223$	α:体積(4~240 m³)
	流管	フ	_	ド	$y=4.72 \times +223$	α:体積(20~90 m³)
管		整	流	板	$y = 0.82 \times +129$	α:表面積 (25~300 m²)
	小∽	直		管	$y=1.6 \times +3$	α:体積(30~900 m³)
	小容量放流管	曲		管	$y=3.18 \times +3$	α:体積(1~550 m³)
	流管	漸	縮	管	$y=3.71 \times +3$	α:体積(1~160 m³)
		分	岐	管	$y=5.74 \times +3$	α:体積 (4~90 m³)
		ベル	マウス	部	$y = 4.33 \times +3$	α:体積 (0.5~10 m³)

- (注) 1. yは標準製作工数(人/条), xは摘要に記載している1条当りの各々の要素である。
 - 2. 標準製作工数には、補剛材の製作も含むものとする。
 - 3. 大容量放流管の管胴及び小容量放流管は、スチフナ、リングガーダ、ジベル補剛を標準とする。
 - 4. 整流板は、スチフナ、ジベル補剛を標準とする。
 - 5. 輸送中の変形防止及び溶接による変形低減のために放流管内に設けられる内部支保 工の製作工数は、標準製作工数に含まれている。
 - 6. 曲管とは、曲率を構成する各節が 3m に満たないものの曲率を構成する部分をいう。
 - 7. 曲率が大きい場合で、各節が 3m 以上となるものは、直管とする。
 - 8. 小容量放流管の直(曲)管が複数ある場合で、管内径が同一の場合は複数の延べ延長で算出する。

3) 取水設備

取水設備の標準製作工数は、表-2・36とする。

表-2・36 標準製作工数

	製作区分			標準製作工数	摘要
取	直線	扉	体	$y = 7.75 \times -85$	y:標準製作工数 (人/門) X:扉体面積 (15~350m²) (純径間 (m) ×全伸長 (m))
水設備	直線多段ゲート	戸 当	ŋ	$y=7.10 \times +385$	y:標準製作工数 (人/門分) x:戸当り延長 (30~550m) (片側側部戸当り高 (m) ×2+純径間 (m)) ×段数
		開閉装	置	(1M1D) $y=26.6 \times 0.5094$ (1M2D) $y=2.74 \times 0.8016$	y:製作工数(人/門分) : 開閉荷重(kN)
		整流装	置	$y = 25.9 \times +182$	y:標準製作工数 (人/基) X:整流装置投影面積 (2~40 m²)
		スクリー	ン	$y=1.31 \times -5$	y:標準製作工数 (人/基) X:パネル総面積 (60~760 m²)

	製化	下区 分		標準製作工数	摘要
取水	円形多段ゲ	屝	体	$y=2.75 \times +230$	y:標準製作工数 (人/門) X:体積 (10~830 m³) (最大口径面積 (ベルマウス除く) (m²) ×全伸長 (m))
設備	ダゲート	開閉	装置	(1M1D) $y=26.6 \times 0.5094$ (1M2D) $y=2.74 \times 0.8016$	y:標準製作工数(人/門分) X:開閉荷重(kN)
		整流	装 置	$y=25.9 \times +182$	y:標準製作工数 (人/基) X:整流装置投影面積 (2~40 m²)
		スクリ	リーン	$y=0.56 \times +4$	y:標準製作工数 (人/基) X:パネル面積 (600~2,000 m²)
		取水塔	(架構)	$y=49.7 \times 0.714$	y:標準製作工数 (人/基) X:扉体体積 (10~830 m³) (最大口径面積 (ベルマウス除く) (m²) ×全伸長 (m))

- (注) 1. y は標準製作工数 (人/門, 門分, 基), x は摘要に記載している 1 門当りの各々の要素である。
 - 2. 直線多段ゲートの「スクリーン」は受桁も含まれるが、円形多段ゲートのスクリーンは受桁を含まない(取水塔に含まれる)。
 - 3. 開閉装置の標準製作工数
 - (1) 取水設備の開閉装置は、ワイヤロープウインチ式の場合である。
 - (2) 1M1D, 1M2D 開閉装置は、ドラムをオープンギアで減速駆動する方式で、休止装置が設けられるものを標準とする工数であり、標準以外のものは補正するものとする。

なお、取水設備の開閉装置は揚程が 20m 以内のものを標準とする工数であり、標準以外のものは補正するものとする。

(3) 標準製作工数に含む内容は、次のとおりである。

開閉装置毎の標準製作工数

- 1) ワイヤロープウインチ・・・・開閉機全体,大形開閉装置付の点検梯子等
- 4. 「開閉装置」は1基当りとし、多段ゲートで上段扉、下段扉用とある場合は、各々で算出し合算するものとする。
- 5. 整流装置は、リフティング装置を含むものとする。
- 6. 円形多段ゲートの取水塔は、独立塔形式及び堤体支持方式を標準とする。
- 7. 円形多段ゲートの取水塔には、戸当りを含むものとする。
- 8. 下記については、標準製作工数に含まれないため別途積算するものとする。
 - (1) 開閉装置の点検設備(オーバーブリッジ形の通路,転向シーブ点検架台),ロープダクト等。
 - (2) 据付架台(設備の現地据付等に際して使用する架台で、工場製作され埋設するもの)。
 - (3) 組立架台 (工場製作され一時的に設備を支持する架台等で埋設されないもの) (「3 3-5 (4) 組立架台」による)。

4) 小容量放流設備用ゲート・バルブ

小容量放流設備用ゲート・バルブの製作工数は、表-2・37を標準とする。

表-2・37 小容量放流設備用ゲート・バルブ標準製作工数

種別	標準製作工数	適用口径(mm)
ジェットフローゲート	y = 0.366x + 20	180~2, 400
高圧スライドゲート	y = 0.424x - 78	400~1,700
スルースバルブ	y=0.293x-31	400~1,600

- (注) 1. y は標準製作工数 (人/台), x は口径 (mm) である。
 - 2. 標準製作工数に含む内容は、次のとおりとする。
 - (1) 扉体又は弁体の製作工数
 - (2) ボンネット・ケーシング又は弁胴の製作工数(なお,ボンネット又は弁胴と空気管 又は充水装置が一体となっている場合は,最寄りのフランジまでの配管を含む)
 - (3) 支持台の製作工数
 - (4) 開閉装置の製作工数については、次のとおりとする。
 - 1) ジェットフローゲート,高圧スライドゲート,スルースバルブについては,スピンドル,油圧シリンダ等の機器単体品は,含まない。
 - 2)油圧シリンダ式開閉装置の場合において、油圧ユニット以降の油圧配管の製作工数は、標準製作工数に含まれる。

ただし、異なる油圧ユニットを連結するための油圧配管の製作工数は、別途積上 げるものとする。

3. ゲート・バルブの本体の通水路断面が矩形の場合,矩形通水路断面積を円形通水路断面 積に置き換えた場合に相当する口径とする。

<口径について>

ジェットフローゲートの口径 x はコニカルノズル内径の1.2 倍とする。また、他のゲート・バルブについて、円形通水路の場合はその口径とし、矩形通水路断面積を等価な円形断面積に置き換えた場合の等価口径とする。

通水路断面が矩形の場合の置き換え方は,次のとおりとする。

- (例) B=1,300mm, H=1,000mm の場合 $D=2\times (B\times H/\pi)^{-1/2}=1,286.5\cdots \quad \phi\,1,287mm \, として置き換える。$
- 4. 高圧スライドゲートは、主ゲート、副ゲートのいずれの場合においても適用出来る。
- 5. ジェットフローゲート, 高圧スライドゲート, スルースバルブのスピンドル, 油圧シリンダは標準製作工数に含まれていないため, 機器単体品として計上するものとする。

表-2・38 標準製作工数範囲区分

ゲート区分	標準製作	備考	
	スピンドル	油圧シリンダ	
ジェットフローゲート	×	×	機器単体品計上
高圧スライドゲート	×	×	機器単体品計上
スルースバルブ	×	×	機器単体品計上

- 6. 下記については標準製作工数に含まれないため別途積算するものとする。
 - (1) 設計水深が 150m を超える場合。
 - (2) 主ゲート・バルブ, 副ゲート・バルブ間の接続管, 空気管, 充水装置(弁胴の製作工数に含まれないもの)。

(3) 据付架台(設備の現地据付等に際して使用する架台で、工場製作され埋設されるもの)。

5) 付属設備

ダム用水門設備に付帯する管理橋、階段、防護柵等の付属設備の製作工数は、「第 18 章 鋼製付属設備」によるものとする。

ダム用水門設備に付帯する付属設備の標準製作工数は、表-2・39とする。

製作区分				適用区分	摘 要		
操	作	Ē	橋	区分 A	H 形鋼, 溝形鋼, 鋼板を主体として製作するもの		
転向シーブ点検架台 区分A							
ロープダクト 区分D				区分 D			
			小战	区分 A	鋼板を巻いて製作するもの		
空気管及び充水管			N B	区分 D	既製管を加工製作するもの		
油圧シリンダフレーム 区分A			ーム	区分 A			
			卟	区分 A	大容量放流管用 (鋼板のビルドアップを伴うもの)		
短分D			П	区分 D	小容量放流管用 (形鋼のみにより製作するもの)		
油 圧 配 管 区分D			管	区分 D	既製管による		

表-2・39 鋼製付属設備の適用区分

- (注) 1. 間接労務費率,工場管理費率,補助材料費率は鋼製付属設備の率とする。
 - 2. 上記区分において、主体となる設備と一体で主設備の機能の一部となる場合は、間接製作費は、主設備本体の率とする。
 - 3. ステンレス及びステンレスクラッド鋼を使用した場合は、鋼製付属設備に準じて補正を行うものとする。
 - 4. 基礎材の据付架台は、鋼製付属設備区分Dを準用するものとする。

(3) 工数補正

1) 使用材料による補正

主要部材にステンレス鋼, ステンレスクラッド鋼を使用した場合の補正係数 (Km) は、表-2・40 による。

設備区分	区	分	係数 Km ⁰	係数 Km ¹⁰⁰	補正係数算定式
三方水密ラジアルゲート	扉	体	0.91	1.18	$Km = (Km^{100} - Km^0) \frac{W_1}{W_2} + Km^0$
四方水密ラジアルゲート	扉	体	0.91	1.18	™:使用材料による補正係数
四方水密ローラゲート	扉	体	0.91	1.18	Km ¹⁰⁰ : 設備区分毎の係数 Km ⁰ : 設備区分毎の係数
四方水密スライドゲート	扉	体	1.00	1.30	W₁: 主要部材におけるステンレス鋼及び ステンレスクラッド鋼の質量(kg)
直線多段ゲート	扉	体	0.91	1.18	₩ ₂ : 主要部材質量 (kg)
円形多段ゲート	扉	体	0.77	1.00	Km は, 小数第3位を四捨五入して, 第2位とする
小容量放流設備用ゲート・バルブ	す~	て	Km =1.00		

表 $-2\cdot40$ ステンレス鋼及びステンレスクラッド鋼の補正係数 (Km)

- (注) 1. 各設備の「扉体」のみ補正を行うものとし、「戸当り」、「開閉装置」、「基礎材」については、材質による補正を行わないものとする。
 - 2. 取水設備の「スクリーン」,「取水塔」はステンレス鋼を使用した場合の標準工数であり、ステンレス鋼、ステンレスクラッド鋼以外の部材を使用する場合の補正係数は、「0.77」とする。

- 3. 大容量及び小容量放流管は、ステンレス鋼、ステンレスクラッド鋼を使用した場合の標準工数であり、他の部材を使用した場合の補正係数は、「0.77」とする。
- 4. 小容量放流設備用ゲート・バルブの標準工数は接水部にステンレス鋼,ステンレス クラツド鋼を使用した場合(オールステンレスの場合を含む)を標準としており、使 用材料による補正は行わないものとし、他の材料を使用する場合は別途考慮するもの とする。

2) 構造による補正

(イ) 四方水密ローラゲート及び四方水密スライドゲート戸当りは、重構造部戸当り延長による 補正を行うものとし、補正係数(Ks)は、表-2・41による。

表-2・41 四方水密ローラゲート及び四方水密スライドゲート戸当り 補正係数 (Ks)

製作区分	区 分	重構造部戸当り延長比率λ	補正係数 Ks
四方水密ローラゲート 四方水密スライドゲート	戸当り	λ	$Ks = 0.0109 \lambda + 0.36$

(注) 重構造部戸当り延長比率 λ は,

{(片側重構造部戸当り高さ×2+純径間×2)

✓ (片側側部戸当り高さ×2+純径間×2)} ×100 とする。

(ロ) ワイヤロープウインチ式開閉装置は、構造による補正を行うものとし、補正係数 (Ks) は、 次式による。

$Ks = F1 \times F2 \times F3$

また,ダム用水門設備の制水設備及び取水設備用ワイヤロープウインチ式開閉装置は,上 記に加え揚程による補正を行うものとする。

なお、F1、F2 は、表-2・42、F3 は、表-2・43 による。

表-2・42 ワイヤロープウインチ式開閉装置 補正係数 (Ks)

F1 休止装置の有無による	5補正	F2 ドラム駆動方式による補正			
休止装置有り	1.0	ドラム直結式	0.9		
休止装置無し	0.9	オープンギア式	1.0		

表-2・43 ワイヤロープウインチ式開閉装置 揚程補正係数 (F3)

設備区分	開閉装置型式	揚程による補正係数 F3
四方水密ローラゲート開閉装置(制水設備) 四方水密スライドゲート開閉装置(制水設備) 直線多段ゲート開閉装置(取水設備) 円形多段ゲート開閉装置(取水設備)	1 モータ 1 ドラム 1 モータ 2 ドラム	F3=0.006×揚程 (m) +0.88 (ただし,20m以内では1とする)

(ハ) 大容量放流管ベルマウス部は構造により補正を行うものとし、補正係数(Ks)は、表-2・44による。

表-2・44 大容量放流管ベルマウス形式による補正係数(Ks)

構造	4 面ベルマウス	1 面ベルマウス	円形ベルマウス
補正係数	1.00	0.74	0. 92

(二) 小容量放流管に既製管を使用する場合は、標準工数に「0.8」を乗じるものとする。

3) 水深による補正

ダム用水門設備の放流設備及び制水設備のうち、下記の製作区分については、水深による補正を行うものとし、補正係数 (Kh) は、表 $-2 \cdot 45$ による。

表-2・45 水深による補正係数 (Kh)

		製作区分	扉 体	戸当り	基 礎 材	摘要
ダム用水	放流設備	四方水密 ラジアルゲート	Kh=0.0295h+0.41	Kh=0.0382h+0.236	Kh=0.0212h+0.576	h:設計水深
小門設備	制水設備	四方水密 ローラゲート 四方水密 スライドゲート	Kh=0.0402h+0.197	Kh=0.0165h+0.670		п. вхн Ліж

4) 製作数による補正

同形状・規格のものを複数(門,条)同時発注する場合の補正係数(Kn)は,表-2・46による。

表-2・46 製作数による補正係数 (Kn)

製作数(門,条,基)	2	3	4	5以上
補正係数(1門、1条、1基当り)	0.95	0.93	0. 92	0. 91

2-4 工場塗装費

標準塗装面積は、積上げによるものとする。

なお、扉体、戸当り、放流管等のステンレス鋼表面の防錆等のための養生費は、別途積上げるもの とする。

標準的な構造の水門設備についての標準塗装面積は、表-2・47、表-2・48とする。

表-2・47 標準塗装面積

	構成区分	扉 体	摘 要	
ダ	三方水密ラジアルゲート	$Y = 6.7 \times +111$	Y : 標準塗装面積 (m²)	
月	四方水密ラジアルゲート	$Y = 15.5 \times +36$		
水門	四方水密ローラゲート	$Y = 7.1 \times +71$	(純径間×扉高)	
設備	四方水密スライドゲート	$Y = 4.8 \times +101$		

表-2・48 標準塗装面積

小		形	式	設置方法	標準塗装面積:y (m²)	適用口径(mm)	摘 要
容量	ゲー	ジェットフ	フローゲート	露出	y=0.03x-2.5	180~2, 400	y:塗装面積 (m²),
放流		高圧スライドゲート	埋 設	y=0.004x+2.1	180, ~2, 400	x:口径 (mm)	
設備	小容量放流設備用 が高圧スラースルース		スバルブ	露出	y = 0.004x + 0.2	400 - 1 600	(ジェットフローゲートの x はコ ニカルノズル内径×1.2 倍とす
用		スルース/		埋設	y=0.005x+0.9	400~1,600	る)

- (注) 1. 戸当り、開閉装置、基礎材等の面積については、別途積上げるものとする。
 - 2. 上表における標準塗装面積は、大気露出部での塗装面積であり、据付けまでの防錆を目的としたコンクリート埋設部等のプライマ塗装及びステンレス材の酸洗いが必要な場合は、その面積を別途積上げるものとする。

2-5 ステンレス鋼表面処理費

ステンレス鋼表面処理費の積算は、次式による。

ステンレス鋼表面処理費=製作労務費×ステンレス鋼表面処理率(%)

なお、製作労務費とは、Km (使用材料による補正係数)、Ks (構造による補正係数)、Kh (水深による補正係数)、Kn (製作数による補正係数)を加味されたものであり、ステンレス鋼表面処理率は、表 $-2\cdot49$ によるものとする。

	衣=2・49 人アンレ入鋼衣回処理学							
区 区	構 成 分	扉 体	戸当り	その他	適用範囲			
	三方水密ラジアルゲート							
	四方水密ラジアルゲート	v = 0.84x + 1.43	4.0					
タ	四方水密ローラゲート	y 0.01x + 1.10	1. 0					
月用	四方水密スライドゲート							
水	放流管:大容量放流管			v = 27.78x - 11.71	x>0.5			
門	放流管:小容量放流管			y -21.70x 11.71	x > 0. 5			
設	以 / N 区 / M · E / M ·	別途積上による	別途積上	別途積上による				
備	取水設備:円形多段ゲート	別歴領工(こよる)	による	別歴領工による				
	小容量放流設備用ゲート・ バルブ			y = 3.68x - 0.39	x>0.5			

表-2・49 ステンレス鋼表面処理率

(%)

(注) y はステンレス鋼表面処理工率 (%), x は1 門(基) 当りのステンレス使用率である。

ステンレス使用率= $\frac{W_1}{W_2} = \frac{$ 主要部材におけるステンレス鋼及びステンレス使用率= $\frac{X_1}{X_2} = \frac{$ 主要部材質量 $\frac{X_1}{X_2} = \frac{X_1}{X_2} = \frac{X_1}{X_1} = \frac{X_2}{X_2} = \frac{X_1}{X_2} = \frac{X_1}{X_1} = \frac{X$

2-6 直接経費

- (1) 木型費は、鋳放し単価に含めるものとし、積算の対象としない。
- (2) 特許又は特殊技術に係る製作で、専門業者により行われるものは直接経費の項で計上するものとする。

3 直接工事費

3-1 材料費

(1) 材料費構成

材料費の構成は、次のとおりとする。

材料費=据付材料費+補助材料費

(2) 据付材料費

据付材料費の積算は,次式による。

据付材料費=据付労務費×据付材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は対象としない。

なお、据付材料費率は、表 $-2 \cdot 50$ によるものとする。

 表-2·50 据付材料費率
 (%)

 区
 分
 据付材料費率

		区		分	据付材料費率
放	流	⇒凡	備	三方水密ラジアルゲート	
放	ÐIL	設		四方水密ラジアルゲート	
制	- ₩	水 設		四方水密ローラゲート	
lith (八			四方水密スライドゲート	2, 5
取	水	設	備	直線多段ゲート	2. 5
収	水	成 加		円形多段ゲート	
放	· 流		管	大容量放流管	
JJX - {JIL		E	小容量放流管		
小容量	小容量放流設備用ゲート・バルブ			すべて	6.0

(注) 据付材料費率に含まれる据付材料は、次のとおりとする。

据付けに必要な現地加工するステー材・アンカー材、機側操作盤以降の電気配線・配管 材、油脂類等(作動油、潤滑油を含む)は、据付材料費率に含まれている。なお、別途積 上げ計上する材料の鋼材単価は材料割増及びスクラップ控除しないものとする。

開閉装置が油圧式の場合の油圧配管の材料費については,直接製作費の直接材料費(副部材費)にて別途積上げる。

(3) 据付補助材料費

据付補助材料費の積算は,次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は、対象としない。

なお、据付補助材料費率は、表-2・51によるものとする。

表-2·51 据付補助材料費率 (%)

		区		分	据付補助材料費率
放	流	設	備	三方水密ラジアルゲート	
JJX	₹/IL	収	VH	四方水密ラジアルゲート	
制	-lv	水 設		四方水密ローラゲート	
נימו	//\			四方水密スライドゲート	6, 5
取	水	設	備	直線多段ゲート	0. 5
収	水	、		円形多段ゲート	
tile	放 流 管		晓	大容量放流管	
JJX			Ħ	小容量放流管	
小容量	小容量放流設備用ゲート・バルブ			すべて	5. 0

3-2 据付工数

(1) 据付工数

据付工数は, 次式による。

$Y = y \times Kh \times Kn$

Y : 設備1門当りの据付工数(人) y : 設備1門当りの標準据付工数(人)

Kh: 水深による補正係数 Kn: 据付数による補正係数

(2) 標準据付工数

1) ダム用水門設備

ダム用水門設備の標準据付工数は、表-2・52とする。

表-2・52 標準据付工数

					標準据付工数		職種別構成	割合 (%)							
		区		分	y:据付工数 (人/門)	適 要	機械設備据 付 工	普通作業員							
放	流	設	備	三方水密 ラジアルゲート	$y = 7.54 \times +142$	2: 扉体面積 (60~200 m²)(純径間 (m) ×有効高 (m))									
/JX	ÐЩ	叹	VH	四方水密 ラジアルゲート	$y = 33.4 \times +120$	2: 扉体面積 (6~50 m²)(純径間 (m) ×扉高 (m))									
制	水	設	備	四方水密 ローラゲート	$y = 17.3 \times +310$	※ : 扉体面積 (7~75 m²)(純径間 (m) ×扉高 (m))									
ניח	八	叹	7/用	四方水密 スライドゲート	$y=13.8 \times +248$	X: 扉体面積 (7~75 m²)(純径間 (m) ×扉高 (m))									
										直線多段ゲー	直線多段ゲート	$y=9.76 \times +678$	X: 扉体面積 (15~350 m²)(純径間 (m) ×全伸長 (m))		
取	取 水 設		設備	開 円形多段ゲート	$y=9.15 \times +656$	X: 扉体体積 (10~830 m³) 全伸長 (m) ×最大口径面積 (m²) (ベルマウス除く)	80	20							
大名	7 昌	# >	; <i>/</i> /c;	管胴部	$y=y_1+y_2$ $y_1=1.14 \chi_1+1,153$ $y_2=0.66 \chi_2$	α ₁ :体積 (25~400 m³)									
八石	里(双初	L B	整流板		α ₂ :面積 (25~300 m²)									
小	容 量 放 流 管		放 流 管	y=1.23 × +366	α:管体積(100~900m³)										
小容	小容量放流設 備用ゲート・ バルブ			ジェットフロー ゲート		x : 放流管径(180~2, 400mm) (コニカルノズル内径×1. 2)									
備用				高圧スライド ゲート	$y = 0.06 \times +55$	α: 放流管径(400~1,700mm)									
				スルースバルブ		α: 放流管径 (400~1,600mm)									

(注) 1. 標準据付工数の範囲

- (1) ダム用水門設備の標準据付工数の範囲は、扉体、戸当り、開閉装置、基礎材、機側操作盤(機 側操作盤以降の電気配線、配管を含む)、据付架台の据付け、組立架台の設置及び撤去等、準備、 試運転調整、後片付けまでとする。
- (2) 取水設備には、スクリーン、整流装置、リフティング装置、取水塔(円形多段ゲート)を含むものとする。
- (3) 小容量放流設備用ゲート・バルブの標準据付工数の範囲は、扉体又は弁体、ケーシング及びボンネット又は弁胴、開閉装置、支持台、機側操作盤(機側操作盤以降の電気配線、配管を含む)、据付架台、準備、試運転調整、後片付けであり、放流管との接続作業は含むが、放流管及び主ゲート・バルブ、副ゲート・バルブ間の接続管については、別途積算するものとする。
- (4) 大容量放流管の標準据付工数の範囲は、据付架台、ベルマウス、フード、管胴、整流板、補剛 材等の据付け、内部支保工の撤去、準備、後片付けまでとする。
- 2. 標準据付工数と範囲外の分界点
- (1) 土木工事(二次コンクリート,仮締切,水替,コンクリートはつり等),電気工事(一次側配管・配線,照明等) 塗装及び特殊工事については,標準据付工数に含まれていないため,別途積算するものとする。
- (2) ダム用水門設備の四方水密ラジアルゲート及び小容量放流設備用ゲート・バルブには、油圧ユニット以降の油圧配管の据付けを含むものとする。
 - ただし、異なるユニットを連結するためのものは、別途積算するものとする。
- (3) ダム用水門設備において、空気管、充水装置は標準据付工数に含まれないため別途積算するものとするが、主体となる設備と一体となっている場合は、最寄りのフランジまでの配管を含むも

のとする。

3. 作業環境等

ダム用水門設備は、ケーブルクレーン等を用い、堤体打設と競合する条件下において据付ける場合のものである。

4. 分割発注の場合の区分別工数は、次式による。

区分別工数(人/門)=全体工数(人/門)×区分別工数比率

区分別工数比率は、表 $-2 \cdot 53$ のとおりとする。

表-2.53 区分別工数比率

	区分		工数比率	区 (%)	
種 別		扉 体	戸当り	開閉装置	基礎材
放流設備	三方水密ラジアルゲート	50	10	20	20
<i>万</i> 又 (川 市文 1)用	四方水密ラジアルゲート	35	20	25	20
生11小小件	四方水密ローラゲート	35	55	10	_
制水設備	四方水密スライドゲート	35	55	10	_

種別	区分	扉 体	戸当り	開閉装置	取水 スクリーン	整流装置	リフティング 装置
取水設備	直線多段ゲート	20	35	15	25		5
	円形多段ゲート	15		10	70		5

2) 付属設備

ダム用水門設備に付帯する管理橋、階段、防護柵等の付属設備の据付工数は、「第 18 章 鋼製付属設備」によるものとする。

なお、据付工数は、当該設備の構造を勘案し適用区分を決定するものとする。

(3) 工数補正

1) 水深による補正

ダム用水門の放流設備及び制水設備は、水深による補正を行うものとし、水深による補正係数 (Kh) は、表 $-2 \cdot 54$ による。

表-2・54 水深による補正係数 (Kh)

区 分	水深による補正係数 (K h)	摘 要	
四方水密ラジアルゲート	Kh=0.0316h+0.367	h:設計水深	
四方水密ローラゲート 四方水密スライドゲート	Kh=0.0257h+0.486		

2) 据付数による補正

同時期・現場,同形状・規格の水門設備を複数(門,条)据付ける場合は,据付数により工数の補正を行うものとする。

なお、据付数による補正係数 (Kn) は、表 $-2 \cdot 55$ による。

表-2・55 据付数による補正係数 (Kn)

据付数(門,条)	2	3	4	5 以上
補正係数(1 門、1 条当り)	0. 95	0.92	0.90	0.88

- 3-3 凍結防止装置(鋼管発熱式)工事,シャッター工事,PC鋼棒・鋼線工事及び据付後の緊張工事・ グラウト工事
 - (1) 凍結防止装置(鋼管発熱式)工事

凍結防止装置(鋼管発熱式)の据付費は、見積りによるものとし、据付けに要する材料費、労務費、共通仮設費、現場管理費、据付間接費、一般管理費等を含む一式を直接経費として計上する。 なお、共通仮設費及び現場管理費算定の取扱いは、算定の対象外とし、設計技術費、一般管理費等の算定時の取扱いは、機器単体品と同様とする。

(2) シャッター工事

シャッター工事の据付費は、見積りによるものとし、据付けに要する材料費、労務費、共通仮設費、現場管理費、据付間接費、一般管理費等を含む一式を直接経費として計上する。

なお、共通仮設費及び現場管理費算定の取扱いは、算定の対象外とし、設計技術費、一般管理費等の算定時の取扱いは、機器単体品と同様とする。

(3) PC 鋼棒·鋼線工

PC 鋼棒・鋼線工事の据付工数は、本体の据付工数に含まれる。

(4) 据付後の緊張工事・グラウト工事

据付後の緊張工事・グラウト工事は、見積りによるものとし、材料費、労務費、共通仮設費、現場管理費、据付間接費、一般管理費等含む一式を直接経費として計上する。

なお, 共通仮設費及び現場管理費算定の取扱いは, 算定の対象外とし, 設計技術費, 一般管理費等の算定時の取扱いは, 機器単体品と同様とする。

3-4 取替工数

(1) ワイヤロープ

「第IX編第2章①河川用水門設備」の4 4-2 (1) ワイヤロープ取替工数を使用する。

3-5 機械経費

(1) 標準機械器具

据付けに係る機械経費は、表 $-2 \cdot 56$ を標準として計上するものとする。

なお、機種選定、所要数量、運転日数等については、据付条件並びに関連工事などを勘案のうえ 決定するものとする。

ただし、ダム用水門設備についての運転時間等は、別途積上げるものとする。

また、小容量放流設備用ゲート・バルブのクレーン標準運転日数は、(2)によるものとする。 さらに、小容量放流設備用ゲート・バルブの電気溶接機運転日数については、(3)によるものとする。

機械器具名	標準規格	摘 要
ク レ ー ン		クレーンの能力は最大部材重量,作業半径等を 考慮して決定する
電気溶接機	交流アーク式 (手動・電撃 防止器内蔵型) 200~500A	
II.	直流アーク式 500A	ガウジング用
n	ディーゼルエンジン駆動 ・直流アーク式 ・排出ガス対策型 (第 2 次基準値) 200~500A	商用電源がない場合
空気圧縮機	排出ガス対策型	ガウジング その他
発 動 発 電 機	排出ガス対策型	商用電源がない場合
組 立 架 台		「3 3-5(4)」による
その他必要なもの		
雑 器 具 損 料		機械器具費×2%

表-2.56 標準機械器具

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

(2) クレーン標準運転日数

クレーンの標準運転日数は、表 $-2 \cdot 57$ とする。

対象設備	機	種	規	格	標準運転日数等	摘	要
小容量放流設	クレーン		現場条件 決定する		D=0.002x+2.3	D:運転日数 x:放流管径	(mm)
備用ゲート・ バルブ	ケーブルクジブクレー		ダム工事 として設 いるクレ	置して	h=0.004x+2.7	h:運転時間 x:放流管径	. ,

表-2・57 クレーン標準運転日数

(注) 1. 標準運転日数の範囲

- (1) クレーンの標準運転日数に含まれる範囲は、扉体又は弁体、ケーシング及びボンネット 又は弁胴、開閉装置、支持台、機側操作盤、(機側操作盤以降の電気配線、配管含む)、油 圧ユニット以降の油圧配管、据付架台の据付け及び放流管との接続作業に伴う運転日数で ある。
- 2. 標準運転日数と範囲外の分担
- (1) 本表の適用範囲は、小容量放流設備用ゲート・バルブの放流管径が 180mm 以上 2,400mm 以下の場合であり、180mm 未満又は 2,400mm を超える場合は、別途積算する。

なお、ジェットフローゲートのxは、コニカルノズル内径の1.2倍とする。

(2) 放流管及び主ゲート・バルブ, 副ゲート・バルブ間の接続管については、別途積算する。

- (3)異なる油圧ユニットを連結するための油圧配管の据付けについては、別途積算する。
- (4) クレーンの標準運転日数には、現場までの回送時間は含まれていない。
- 3. クレーンの機種は、現場条件等により、いずれかを選定する。また、クレーンとジブクレーンを併用使用する場合は、別途積算する。

(3) 電気溶接機標準運転日数

電気溶接機の標準運転日数は、表-2・58とする。

表-2・58 電気溶接機の規格及び標準運転日数

対 象 設 備	機種	規格	標準運転日数	摘要
小容量放流設備用ゲート・バルブ	電気溶接機(交流アーク 式(手動・電撃防止器内 蔵型)又はディーゼルエ ンジン駆動・直流アーク 式・排出ガス対策型(第 2次基準値))	200∼500A	D=0.004x+4	D:運転日数 x:放流管径 (mm)

(注) 1. 標準運転日数の範囲

- (1)溶接機の標準運転日数に含まれる範囲は、扉体又は弁体、ケーシング及びボンネット 又は弁胴、開閉装置、支持台、機側操作盤(機側操作盤以降の電気配線、配管含む)、油 圧ユニット以降の油圧配管、据付架台の据付け及び放流管との接続作業に伴う運転日数 である。
- 2. 標準運転日数と範囲外の分担
 - (1)本表の適用範囲は、小容量放流設備用ゲート・バルブの放流管径が 180mm 以上 2,400mm 以下の場合であり、180mm 未満又は 2,400mm を超える場合は、別途積算する。

なお, ジェットフローゲートのxは, コニカルノズル内径の1.2倍とする。

- (2) 放流管及び主ゲート・バルブ, 副ゲート・バルブ間の接続管については、別途積算する
- (3)異なる油圧ユニットを連結するための油圧配管の据付けについては、別途積算する。
- 3. 溶接機の機種は、現場条件により決定する。
- 4. 溶接機の規格は、溶接対象物の形状、寸法等により選定する。
- 5. 溶接機の1日当り標準運転時間は,5時間とする。

(4) 組立架台

組立架台の経費は,次式による。

組立架台経費=基礎価格×損料率

基礎価格及び損料率は、表 $-2 \cdot 59$ のとおりとする。

表-2・59 組立架台の基礎価格及び損料率

(%)

		基礎価格						
区 分		直接製作費	間接	一般管理費等率	損料率			
	材料費	労務費	間接労務費率	工場管理費率	一放官垤負守竿			
組立架台	所要量を積上げ	「第 18 章 鋼製付属 設備」適用区分Dによ る製作工数に賃金を 乗じて算出する。	75	20	14	30		

(注) 1. 組立架台は、分割搬入した扉体等を地組する際に使用する埋設されない架台であり、複数契約で 転用使用することを標準とし、1契約当り30%を減価償却費及び転用補修費として損料計上するも のとする。

なお、同一契約で同時期、同現場において組立架台を再利用しながら複数門を順次据付ける場合

であっても、1 契約で 30%を計上するものとする。

- 2. 基礎価格には組立架台の製造設計に係る経費として間接労務費及び工場管理費は計上するが、設計技術費は計上しない。
- 3. コンクリート等に埋設される据付架台は、別途計上するものとする。

3-6 試運転費

試運転工数は、標準据付工数に含まれているので別途計上しないものとする。

基準の解説

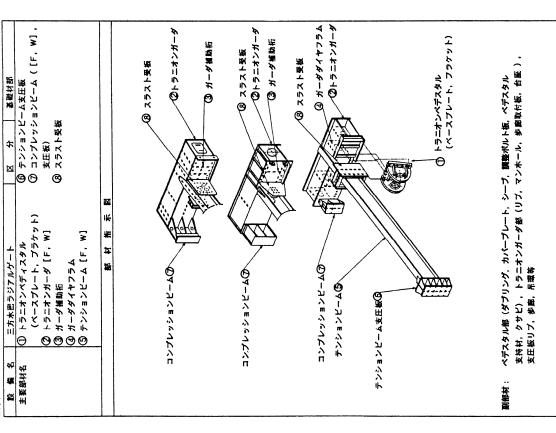
直接製作費

1-1 材料費

- (1) 材料算出要領
 - 主要部材
 主要部材の範囲は、別表-1-1から別表-1-18の「主要部材範囲」に示す。

1-2 製作工数

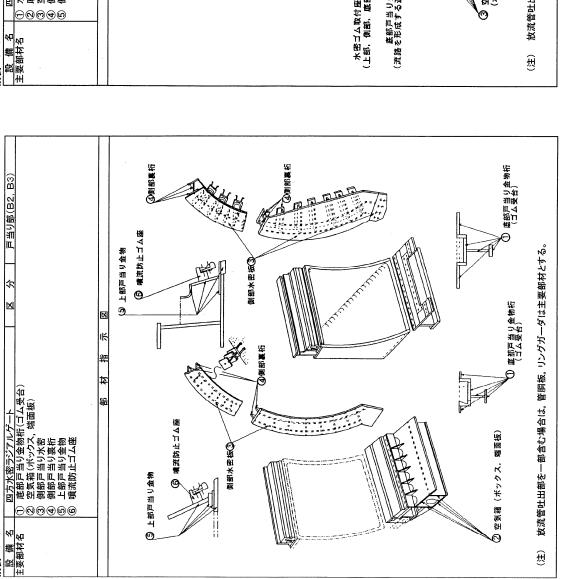
- (1) 標準製作工数算定要領
 - 1) 標準製作工数算定要領標準製作工数算出に当っての各要素の「x(x)」の定義を別表-2-1から別表-2-15の「標準製作工数算定要領」に示す。
 - 2) 製作工数算出区分 製作工数算出に当っては、別表-3-1から別表-3-5の「製作工数算出区分」によるものとす る。


1-3 標準質量

- (1) 標準質量算定要領
 - 1) 標準質量算定要領標準質量算出に当っての各要素の「x」の定義を別表-4-1から別表-4-2の「標準質量算定要領」に示す。

(ブレース, ストラッド) ® トラニオンハブ ([F. W], トラニオ **し トラニオンピン** ◎ トラニオンハブ (トラニオンボス) (ク 脚柱関トラス (ブレース,ストラッド) **サイドローヴ, 半粒, 騒温, 歩廊, 排子, ガセットプレート, タイプレート, 応疑,練出会等** | 区 分 | 原体部 (G 脚柱 [F, W] (プ 脚柱間トラス [F, W] シーブ、シーブ軸、キープレート、シーブブラケット、水密ゴム, 水密ゴム押え板、 草 ゆ トラニオンピン ンギス) 数女指示图 三方木配ラジアルゲート ① スキンプレート ② 主権 (業) 桁 [F, W] ③ 植助権 (業) 桁 [F, W] ④ 雑様だ [F, W] 別表一1 主要部材範囲 別表-1-1 放流設備 植型板 (株) 作 (4) スキンプレートの **船横柜** 主義(議) 桁(2) 数篇名 主要部村名 ゲーグの 副部村:

主要部材範囲 別表一1


別表-1-3

主要部材範囲 別表一 1 別表-1-4

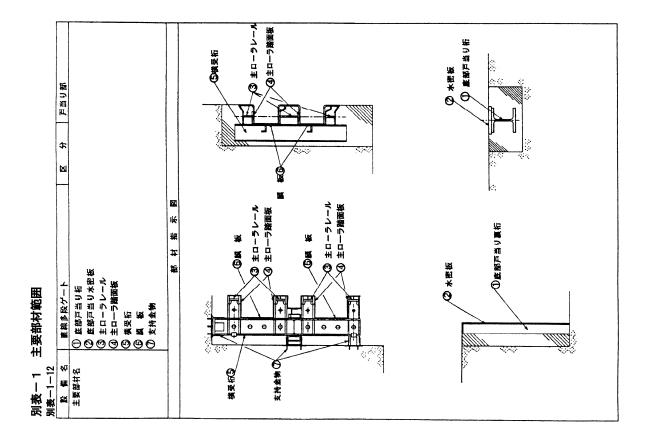
区 分 扉体部 (G) 脚柱面補配材 [F, W] (指示図文養) カラニオンハブ ([F, W], トラニオンパンズ (E, W], トラニオンピン (E, W], トラニオンピン	(トラニオンボス) (トラニオンボス) (トラニオンボス)	(ン部、水密部、サイドローラ(又はシュー) サポート、脚柱滑り止め、吊環・真当会等
版 橋 名 <u>四方水田ラジアルゲート</u> 主撃部村名 ① スキンブレート ② 主機 (業) 祐 [F, W] ③ 塩酸 (番) 格 [F, W] ④ 塩穣桁 [F, W] ⑤ 脚柱 [F, W]		副部材: シーブ、ダイヤフラム、吊上げ部、休止ビン部、水密部、サイドローラ 年酒、臨場、歩廊、様子、常治配管、サポート、野柱港リ止め、

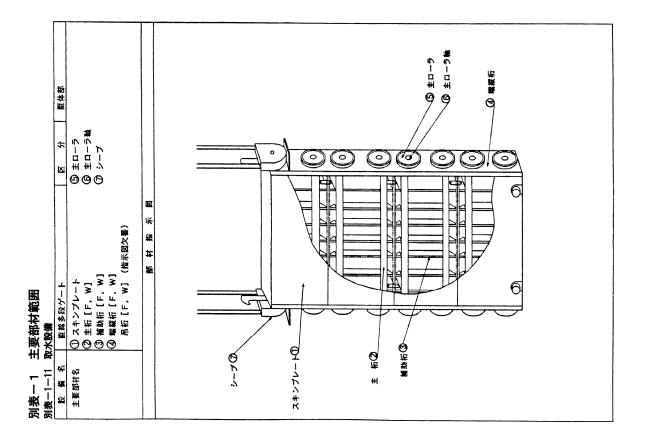
別表一1 主要部材範囲 _{別表}-1-5

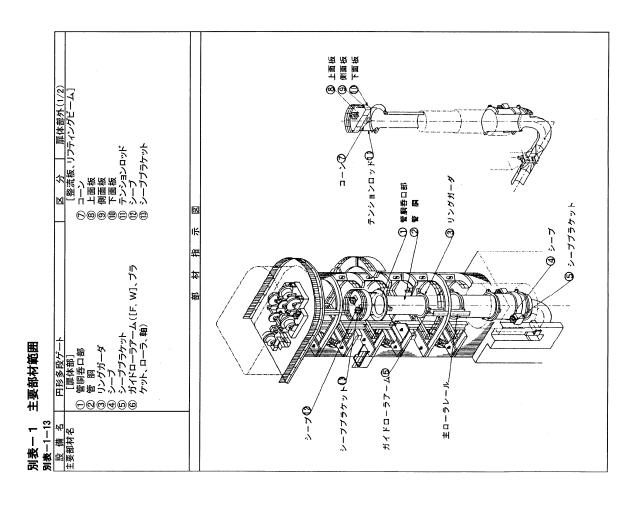
空気箱 (复部) 戸当り部(A2, B1) **郵野川当り複** ⑤●悪質だ **放流管吐出部を一部含む場合は、管胴板、リングガーダは主要部材とする。** 9 四方水密ラジアルゲート ① 水密ゴム取付座(上部,側部,底部) ② 底部戸当仏物(流路を形成する連結板) ③ 空気箱(底部,側部) ④ 側部戸当り板 上部戸当り金物 〇 電流防止ゴム座 笳 空気箱 (底部) (ボックス, 矯面板) 0 主要部材範囲 底部戸当り金物の (流路を形成する連結板) 水配ゴム取付座 (DK) (上部, 風部, 底部) 別表-1-6 設備名 主要部材名 別表一1

別表一1 主要部材範囲 ^{別表-1-7}

河救一!一/	段 備 名 四方水密	主要部付名 (**) トラニオ (ペース (ペース (ペース (ペーン (ペーン (ペーン (ペーン (ペーン (ペーン (ペーン (ペーン	
	水密ラジアルゲート	トラニオンペディスタル (ペースブレート, ブラケット) トラニオンガーダ (ボックス) ガーダ補助桁 ガーダイヤフラム	1 3 5
	M		
	#		
	基礎材部 メナナン	(文仕ガーアカム)	
- }			

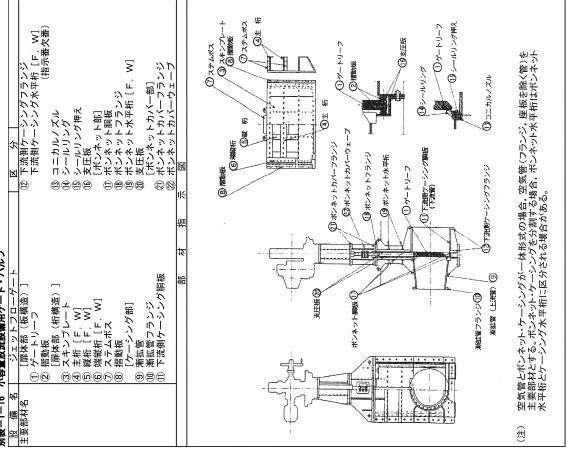

|--|

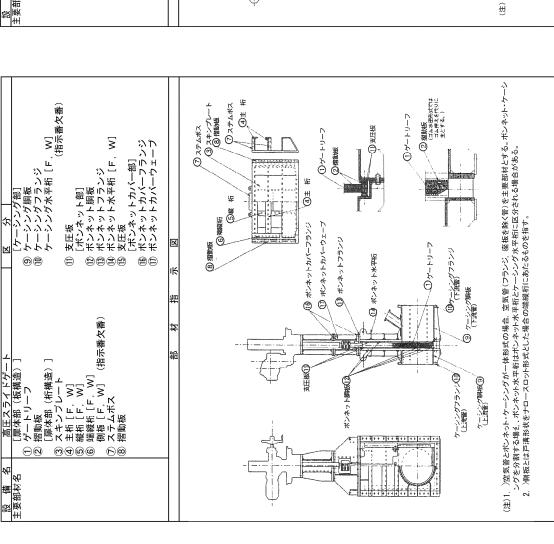

タガーダ橋 Ø トラニオンガーダ (ボッシ Ø 11-8814756 ◆ トラニオンガーダ (ボックス) **⊕** ガータタイヤフラム ④ ガーダ補助桁 **め トラニオンペディスタル** (ペースブレート, ブラケット) [支圧ガーダ方式]


別表一1 主要部材範囲 別表-1-9 個水設備

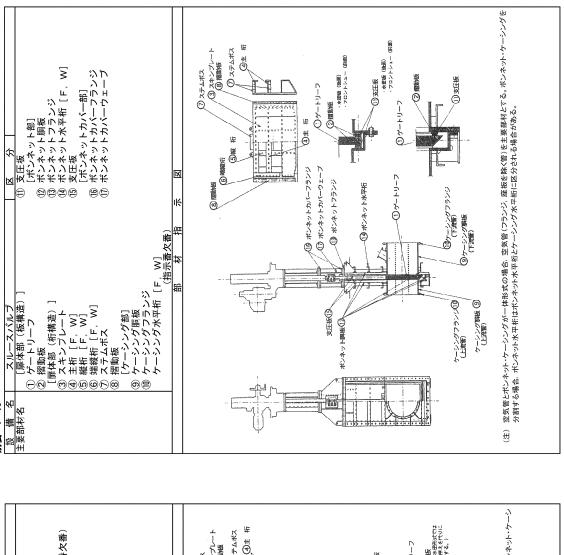
四十二	[四方米密スライドゲート] 康郎戸当り格 原部戸当りAを スライドレール[F, W] 女圧板 側部水密板 側部水密板 側部水砂板 がイドブレート 域 板 (指示図々番) 上部水密板 上部水密板		77-1-0 72-1-10 37-2-16 9-2-16	(A)
N \$	(国力大路スークの 再想 日本 大路 大田 一 一 日 力 大路 スーツ 再 毎 日 出 5 元	X	# 1	HAFTU-KO
# N		即 材 指 示	(四方水密ローラゲート) (3 ±ローラボール (3 ±ローラレール (3 ±ローラレール (4 ギブレート) (5 ±ローラレール (6 ± ローラレール (7 ボブレート) (7 ボブレート) (8 ± ローラレール (8 ± ローラレール	[四方水形スライドゲート] ④ 女田被 ⑤水樫転 ガイドフレード⑥ ◎スライドレール

③ 補助行(ダイヤフラム合む) 票存即 タスキンブレート - B ± □ - ラ M €-¤∓ (5) ❷ 蓋磺花 ⑥ 主ローラ軸 ⑦ シーブ N 3 ① スキンプレート ② 生布 [F. W] ③ 植助布 [F. W] (ダイヤフラム含む) ④ 精微布 [F. W] (ダイヤフラム含む) ⑤ 単ローラ 都材指示图 タジープ 四方水密ローラゲート (高圧ローラーゲート) 预需允 主要部材名




別表一1 主要部材範囲 別表-1-15 ワイヤーロープウインチ式開閉装置

この (ロントン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボーロー プレイン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボン・ボン			ラムギヤ ② ドラム (シェル・ボス) ③ シーブ ③ シーブ ③ シーブ
\$			+ 'n'
M	トドク書)		4 0 4 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
- 全種ゲート共通	 ① ドラム部 (シェル, ボス, フランジ) ② キギヤ (ドラムギヤ, ピニオンギヤ) ③ シーブ部 (シーブ, ブラケット, 輸) ④ 軸額 (ドラム輪, ギヤ輪, ピニオン軸, ト ⑤ 開閉装置フレーム [F, W] 	曹 女 插 小 图	ドラムフランジのドラムがのできる。
京	主 要 数 数 式 名		T


別表一1 主要部材範囲 別表-1-16 小容量放流設備用ゲート・バルブ

別表一 1 主要部材範囲 ^{別表-1-17}

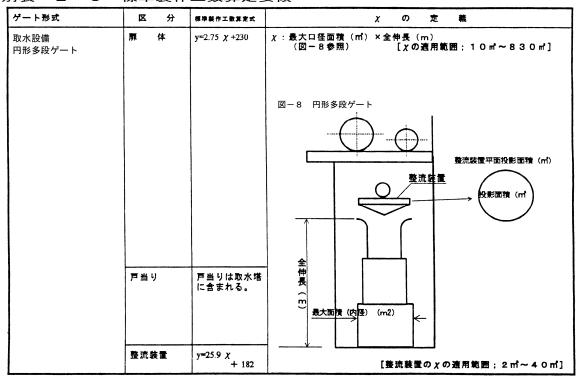
別表一1 主要部材範囲 ^{別表-1-18}

別表-2-1 標準製作工数算定要領

ゲート形式	区 分	標準製作工数算定式	χ の 定 義
三方水密ラジアルゲート	扉 体	y=8. 33 χ +10	χ: 扉体面積 (㎡) [χの適用範囲; 60㎡~200㎡] 扉体面積: 純径間 (m) ×扉高 (m)
	基礎材	y=3. 35 χ -75	(図- 1 参照) 図- 1 三方水密ラジアルゲート 扉体
			片側扉体 四弧長 (m) 整後間 (m)
	戸当り	y=0. 83 χ +18	x:片側扉体円弧長(m)×2+純径間(m) (図-2参照) 片側扉体円弧長は水密延長とする。 [xの適用範囲;20m~60m] 図-2 三方水密ラジアル デート 戸当り
			片側原体 一門服長(m) 一次電池服とする

別表-2-2 標準製作工数算定要領

ゲート形式	区分	標準製作工数算定式	χ の 定 義
四方水密ラジアルゲート	原 体 基 礎 材	y=40. 6 χ -80 y=7. 39 χ +82	χ: 扉体面積 (m²) [χ の適用範囲 ; 6 m² ~ 5 0 m²] 扉体面積 : 扉高 (m) × 純経間 (m) (図ー3 参照) h: 設計水深 : 扉体の直上流における水深に液液高さを加えた水深のうち。 扉体設計で支配的となる水深をいう (m) [hの適用範囲 ; 2 0 m~ 1 2 0 m]
			図ー3 四方水密ラジアルゲート 扉体
	水深補正		※「ダム・塩油放技術基準(薬) (水門屋・放洗管・付属 数準点※ 施設設計マニュアル) 図 2.3.2・1 原体の基本図」
	扉 体	Kh=0. 0295h+0. 410	基準点 [※] 施設設計マニュアル) 図 2.3.2-1 原体の基本図」 参照 吐口町面の高さ
	基礎材	Kh=0. 0212h+0. 576	
			ゲート敷高 純径間(m): 吐口断面の幅
	戸当り	y=3. 38 χ+134	χ: (片側廓体円弧長(n)×4+純経間(n)×2) (図−4参照) [χの適用範囲: 20m~50m]
	水深補正		[hの適用範囲: 20m~120m]
			図-4 四方水密ラジアルゲート 戸当り
	戸当り	Kh=0. 0382h+0. 236	発信間 大流 (上部水密点と下 部水密点と下 部水密点の延長) 機能戸当り長= 原体円収長×4
	開閉装置	y=0. 01 χ+113	χ:開閉荷重 (MM) ×シリンダーストローク長 (m) [χの適用範囲490KNm~25000KNm]


別表-2-3 標準製作工数算定要領

ゲート形式	区分	標準製作工製算定式	χの 定 義
四方水密ローラゲート四方水密スライドゲート	原体	n-5/*-h y=15.0 x +62 25/1.5 f - h y=12.0 x +49	X: 扉体面積 (m²) 原体面積 : 純径間×扉高 (図-5参照) h:設計水深:扉体の直上流における水深に波浪高さを加えた水深の うち、扉体設計に支配 的となる水深をいう。 (m) ローラゲート 扉体 うち、扉体設計に支配 的となる水深をいう。 (m) [ローラケート 市の x の適用範囲 : 7 m² ~ 7 5 m²] [スライト゚ケーの x の適用範囲 : 7 m² ~ 7 5 m²] [トの適用範囲 : 2 0 m~ 7 0 m]
	戸当り	n-5t'-h y=6.77 x-21 254h't'-h y=6.77 x-21	X: (片側側部戸当り高さ(m)×2+純径間(m)×2) (図-6参照) [xの適用範囲:15m~140m] 図-6 四方水密ローラゲート 戸当り [hの適用範囲:20m~70m]

別表-2-4 標準製作工数算定要領

ゲート形式	区分	標準製作工数算定式	χ の 定 義
取水設備 直線多段ゲート	扉 体	y=7.75 χ -85	χ:原体面積(m′) [χの適用範囲;15m′~350m′] 原体面積:純径間(m)×全伸長(m)
	戸当り	y=7.10 χ +385	X: (片側側部戸当り高(m)×2+純径間(m))×段数 [Xの適用範囲:30m~550m] (図ー7参照) 図-7 直線多段ゲート
			整流装置平面投影面積(面2) 整備進声当り、
	整流装置	y=25.9 χ +182	χ:整流装置投影面積 [χの適用範囲; 2㎡~40㎡]

別表-2-5 標準製作工数算定要領

別表-2-6 標準製作工数算定要領

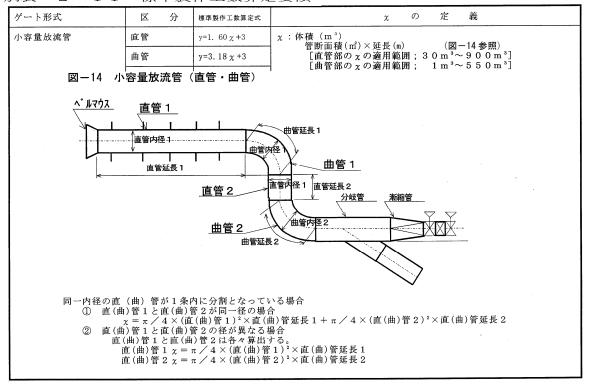
ゲート形式	区分	標準製作工数算定式	χ の 定 義
取水設備	スク(ログ リーク N N N N N N N N N N N N N N N N N N N	y=1.31 χ-5 y=0.56 χ+4	X:面積(㎡) 面積=パネル幅(m)×パネル長(m)×パネル数 (図-9参照) [直線多段用 X の適用範囲:60㎡~760㎡] 図-9 スクリーン [円形多段用 X の適用範囲:600㎡~2,000㎡] (図-9 スクリーン (図ー9・スクリーン (日本日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日

別表-2-7 標準製作工数算定要領

ゲート形式	区分	標準製作工数算定式	χ の 定 義
取水設備	取 水 塔 (架 構)	y=49.7 χ ^{0.714}	χ: 扉体最大口径面積 (m²) ×全伸長 (m) (扉体に準じる) [χの適用範囲; 10 ~830] (図-10参照)
			図一10 取水塔 (家体最大口径面積(m2)
			主柱長(E)

別表-2-8 標準製作工数算定要領

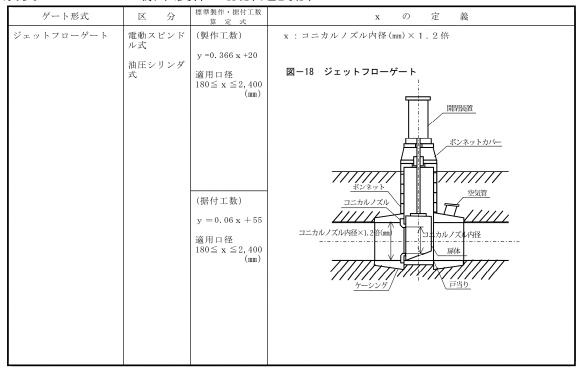
ゲート形式		×	分	標準製作工数算定式	χ の 定 義
大容量放流管	管	胴		y=4. 72 x +223	χ:体積(m²) [χの適用範囲:25m²~400m²] (ベルウス終端高×ベルウス終端高+管胴終端高×管胴終端高)/2×管胴斜距離 (図−11参照)
					図-11 大容量依流管
					※「ダム・環施技術基準(家) (水門側・放流管・付属 施設館計マニュアル) 図 2 3 2-1 原体の基本図」 参照 基準点率 ベルマウス経済中心点から ベルマウス経済中心点から ベルマウス経済中心点がら 管胴終端料距離
					ルマウス終端幅(音)


別表-2-9 標準製作工数算定要領

ゲート形式	区分	標準製作工数算定式	χ の 定 義
ゲート形式大容量放流管	区分	標準製作工數算定式 y=5.94 x+223	X: 体積 (m²) [Xの適用範囲: 4 m²~2 4 0 m²] (ペトマウスは弦楽ペイトで)な妙楽楽ペイトで)な妙楽楽ペイトで)な妙楽楽ペイトで)な妙楽楽ペイトで)な妙楽楽ペイトで)な妙楽楽ペイトで)な妙楽楽ペイトで)な妙楽楽ない。 (水門扉・放流管・付属施設設計マニュアル)表3: 1.3-1 ベルマウス形状 参照 表3: 1.3-1 ベルマウス形状 (抜粋) 種 別 断値
			2a: 長径 矩形 6 1 1/3 2b: 短径 7 0.6 0.2 8 1 0.25 9 1 0.25 10 1 0.25 11 1 1/3 三面 12 1.5 2/3 一面
			<ハマウス料証報計算例> 【例 No. 1、No. 6の場合】 ベルマウス移掘部高さ D=6n のとき 上表より a/D=1 のため ベルマウス料距離 a=D×1=6m 【例 No. 7の場合】 ベルマウス核磁部高さ D=6n のとき 上表より a/D=0.6 のため ベルマウス料距離 a=D×0.6=3.6m

別表-2-10 標準製作工数算定要領

ゲート形式	区分	標準製作工數算定式	х の 定 義
大容量放流管	フード	y=4.72 x +223	X:体積(m²) [Xの適用範囲;20m²~90m²] 体積=(長1(m)×長2(m)+長3(m)×長4(m))/2×斜距離(m) (図-12参照)
			図-12 大容量放流管 (フード)
	整流板	y=0.82 \(\chi +129\)	X: 表面積 (㎡) [Xの適用範囲; 25㎡~300㎡] 片側側部面積 (㎡) × 2 + 序部面積 (㎡) 図-13 大容量放流管 (整流板) (図-13 参照)


別表-2-11 標準製作工数算定要領

別表-2-12 標準製作工数算定要領

区分	標準製作工数算定式	χ の 定 義
漸縮管	y=3. 71 χ +3	x:管断面積(m)×延長(m) (図-15~17参照)
分岐管	y=5. 74 χ +3	図−15 漸縮管 漸縮管 (異形管)
ベルマウス	y=4. 33 χ +3	[xの適用範囲:1m³~160m³] 一方が円形,他方が矩形の場合は両端断面積の平均値にLを乗じた値とする
		図-16 分岐管 D1 分岐管
		図-17 ベルマウス部 ベルマウス部 (円形) χ:π/4×{(D1+D2)/2 }²×L L=ベルマウス呑口端面から曲率 を形成し直線部分との接点まで の距離とする [χの適用範囲:0.5m³~10m³]
	漸縮管	漸縮管 y=3.71 χ+3分岐管 y=5.74 χ+3

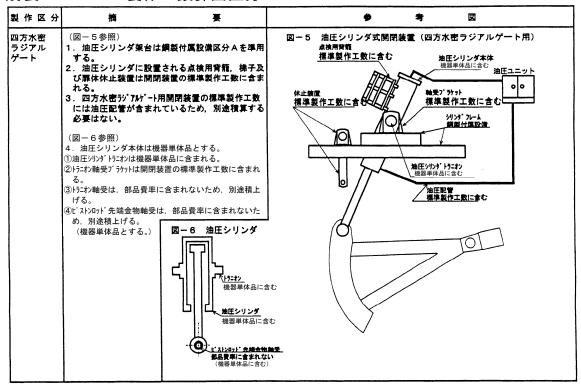
別表-2-13 標準製作工数算定要領

別表-2-14 標準製作工数算定要領

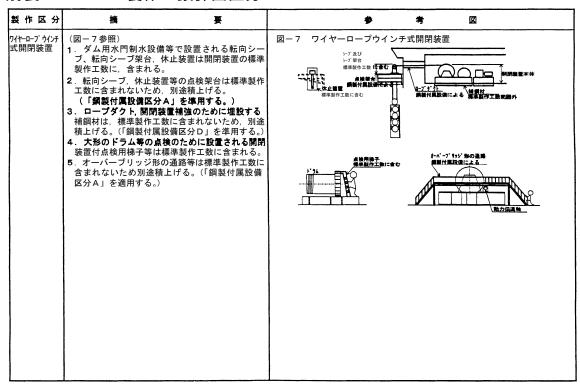
ゲート形式	区 分	標準製作・据付工数 算 定 式	x の 定 義
高圧スライドゲート	電動スピンド 加氏シリンダ	(製作工数) y=0.424x-78 適用 □ 径 400 ≤ x ≤ 1,700 (mm) (据付工数) y=0.06x+55 適用 □ 径 400 ≤ x ≤ 1,700 (mm)	1) 通水路断面が円形状の場合 x:口径(mm) 2) 通水路断面が矩形状の場合 x:矩形断面積を等価な円形断面積に置換えた場合 の等価口径(mm) x=2×(B×H/π) ^{1/2} B:純径間(mm) H:有効高(mm) 図-19 高圧スライドゲート

別表-2-15 標準製作工数算定要領

ゲート形式	区 分	標準製作・据付工数 算 定 式	x の 定 義
スルースバルブ	電動スピンド 油圧シリンダ	(製作工数) y=0.293 x-31 適用口径 400≦ x ≤1,600 (Imm) (据付工数) y=0.06 x +55 適用口径 400≦ x ≤1,600 (Imm)	x : 口径 (mm) 図-20 スルースバルブ

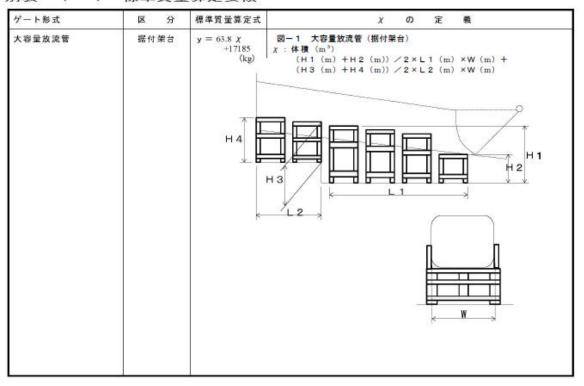

別表-3-1 製作工数算出区分

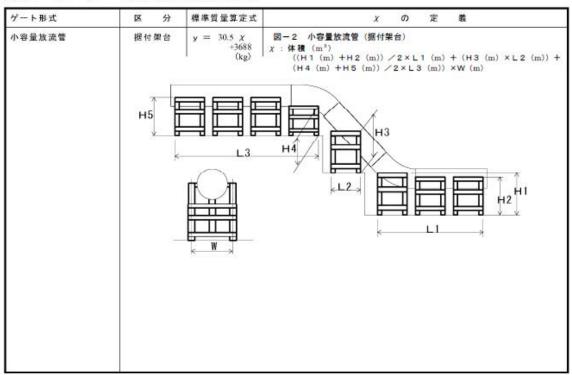
区	分	摘	要			*	考	図	
全		主要部材、副部材に含ま 囲とする。	れるものは、製作工数の範						
横口	レートガ [・] ータ [・] 造 ラゲ - ト 原 体)	準製作工数に含まれる 2. 桁側に設置されるカ 工数に含まれないため (「鋼製付属設備区分 ダム用クレストゲート	バープレートは、標準製作 - 別途積上げる。	⊠—1	ブレートガーダ 横造ローラゲ		点檢用背離機子	₹型 原件	


別表-3-2 製作工数算出区分

別表一	1	工数算出区分		-	
製作区分	摘	¥	*	考	Ø
四方水密 ラジアル ゲート	(図-2参照) 扉体吊金物, ピンは扉体 る。	の標準製作工数に含まれ	図-2 扉体と油圧シリンダの区分	原体吊金具, 七'(原体に含む)	油圧シリング 本体 (機器単体品)
	ンピンが含まれ	は、脚柱、トラニオンボス、トラニオ (にはトラニオンベデスタルまで含ま	図一3 扉体と基礎材の区分	脚柱 トラニオンボ、ス トラニオント・ン トラニオンハ・テ、スタル トラニオンカ・ータ・	原体 (トラエアンド) (本種材 (トラエアンド) (本種材 (トラエアンド) (本種材 (トラエアンド) (本種材 (トラエアンド) (大きサン・ボースタルまで)
	(図-4参照) 大容量放流管, 戸当り とおりとする。	,整流板の区分は図ー4の	図ー4 大容量放流管, 戸当り, 整流板の区分 	放流管 戸当り	整流板

別表一3-3 製作工数算出区分


別表-3-4 製作工数算出区分


別表-3-5 製作工数算出区分

製作区分	摘	要	\$	考	Ø
放流管	区分は製作を設定しています。 図一名のを記述 図一名の適可 図 イエ 数の適可 製作 関係 工 解	ゲート戸当り、整流板との おりとする。 おりとするとし、円形 いては小野量放流管の標準 ものとする。 フナ、リングガーダ、ジベ	部分管路形		全管路形小容量放流管の標準製作工数算定式を準用する。

別表-4-1 標準質量算定要領

別表-4-2 標準質量算定要領

第3章 ゴム引布製起伏ゲート設備

1 適用範囲

この基準は, ゴム引布製起伏ゲート設備の製作, 据付けに適用する。

1-1 区分及び構成

ゴム引布製起伏ゲート設備の区分及び構成は、表 $-3\cdot1$ のとおりとする。

表-3・1 区分及び構成

区	分		構		成	
ゴム引布製起仂	マグート 設備	袋体,	取付金具,	給•	排気設備,	操作設備

- (注) 1. ゴム引布製起伏ゲート設備とは、河川及び開水路に設置するものをいう。
 - 2. 管路内に設置されるゴム引布製起伏ゲートは、含まないものとする。
 - 3. 適用出来る方式は空気式のみであり、水式には適用出来ない。

2 直接製作費

2-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=部品費

(2) 部品費

1) 部品費の積算は、次式による。

部品費=部品所要量×部品単価

部品費に含まれる部品の品目は,次のとおりとする。

給・排気管,ボルト・ナット,パッキン,ジョイント,フランジ,ソケット,ブッシュ,レジューサー,ニップル,ティー,エルボ,各種スイッチ,各種リレー等

2)機器単体費

機器単体費として計上する品目は、表-3・2のとおりとする。

区 分 内 訳 袋 体 ゴム袋体,袋体保護材 (緩衝材又は補強材)

取 付 金 具 受け金具,押え金具,アンカーボルト,ナット,ワッシャー,補強材,各種フランジ等

給・排気設備 給気・排気ブロワー又はポンプ,各種バルブ類,伸縮継手

操 作 設 備 操作室内排水ポンプ,機側操作盤,袋体内圧検知装置,水位検知装置,

表-3・2 機器単体品目

(3) 直接経費

特許又は特殊技術に係る製作で、専門業者により行われるものは直接経費の項で計上するものとする。

2-2 付属設備製作費

ゴム引布製起伏ゲート設備に付帯する鋼製付属設備(階段,手摺,管理歩廊等)の製作費については,「第18章 鋼製付属設備」により算出するものとする。

3 直接工事費

3-1 材料費

据付けに使用するアンカーボルト布設用金具、鉄筋、法面部治具支持材、屋外配管支持材、フランジ整形金具、電気配線管等は積上げ計上するものとする。

3-2 据付工数

据付・試運転調整に要する必要工数を積上げるものとする。

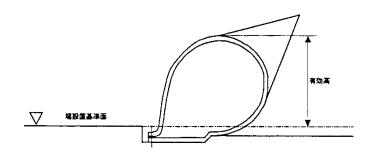
3-3 機械経費

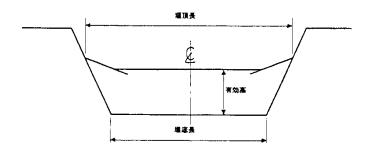
据付けに係る機械経費は、必要に応じてラフテレーンクレーン等について積上げ計上するものとする。

基準の解説

1 直接製作費

1-1 機器単体品


ゴム引布製起伏ゲート設備は、構成する機器等がそれぞれ関連して一体となって機能することを 考慮し、決定する。


2 直接工事費

2-1 機能要素の定義

標準工数算定式「x」の定義は下記のとおりである。

x=1/2×(堰頂長(m)+堰底長(m))×有効高(m)

第4章 揚排水ポンプ設備

① 揚排水ポンプ設備

1 適用範囲

この基準は、用水、揚排水を目的としたポンプ設備の製作、据付けに適用する。ただし、道路排水用ポンプ、深井戸ポンプ、水替等に使用する仮設ポンプには適用出来ない。

1-1 区分及び構成

ポンプ設備の区分及び構成は、表-4・1のとおりとする。

表-4・1 設備区分及び標準構成

設備区分		標 準 構 成					
主ポンプ設備	主ポンプ,主動	主ポンプ,主配管,吐出弁,逆流防止弁,潤滑水装置,軸封水装置,満水装置					
主ポンプ駆動	主原動機	電動機, 内燃機関, ガスタービン, 冷却装置 (ラジエータ・熱交換機等), 消音器					
装置	動力伝達装置	減速機、軸継手、クラッチ類					
系統機器設備	燃料系統	燃料貯油槽(地下・屋外・屋内タンク),燃料小出槽,燃料移送ポンプ,配管,弁					
	給水系統	冷却装置(管内クーラー・クーリングタワー等),冷却水槽(膨張タンク・高架水槽),冷却水ポンプ,潤滑・軸封水ポンプ,ストレーナー,配管,弁,取水設備					
	始動空気系統	空気圧縮機,始動空気槽,配管,弁,蓄電池,充電器					
	呼水系統	真空ポンプ、配管、弁					
	給油系統	潤滑油ポンプ, 配管, 弁					
	給排気系統	換気ファン、ダクト					
電源設備	自家発電設備	発電機盤,原動機,発電機					
	受変電設備	受電盤,変圧器盤					
	直流電源設備	直流電源盤,蓄電池					
	無停電電源装置						
監視操作制御 設備		遠方監視操作制御設備,中央監視操作盤,機側操作盤,補助継電器盤(又はPLC盤),電動機制御盤,系統機器盤,運転支援装置,CCTV設備,計装設備(水位計・流量計等)					
付属設備	天井クレーン						

⁽注) 上表中の標準構成は、ポンプ形式や設備規模等によって省略される場合がある。

1-2 適用条件

(1) ポンプ吐出量及び全揚程

この基準が適用出来るポンプ形式、ポンプ吐出量及び全揚程範囲は、表-4・2を標準とする。

表-4・2 ポンプ吐出量と全揚程範囲

ポンプ形	式	ポンプ吐出量 (m³/min)	全揚程 (m)
横軸軸流ポンプ		12 超 ~ 600 以下	5以下
横軸斜流ポンプ		12 超 ~ 600 以下	8以下
立軸軸流ポンプ	(一床式)	12 超 ~ 325 以下	5以下
11年11年117月(ハン)	(二床式)	12 超 ~ 600 以下	5 以下
- 古軸の本ポンプ	(一床式)	12 超 ~ 325 以下	20 以下
立軸斜流ポンプ	(二床式)	12 超 ~ 850 以下	20 以下

(つづく)

(つづき)

横軸渦巻ポンプ	0.1超 ~ 200以下	140 以下
立軸渦巻ポンプ (斜流)	3.0超~200以下	30 以下
水中ポンプ (固定・着脱)	0.1超~ 90以下	40 以下

- (注) 1. ポンプ吐出量 (m^3/min) は、設計点の吐出量とする。
 - 2. 立軸軸流・斜流ポンプ (一床・二床式) のスラスト力支持方式は, ポンプ支持又は 減速機 (原動機) 支持とする。
 - 3. 立軸軸流・斜流ポンプ (一床・二床式) の軸受は、セラミック軸受を標準とする。
 - 4. 立軸軸流・斜流ポンプ (一床・二床式) の吸込形状がコンクリートケーシング (クローズピット形) の場合は、本基準を適用出来ない。
 - 5. 横軸渦巻ポンプの工場製作費は、両吸込単段形式でポンプ吐出量が12 (m³/min) 超に適用する。また、据付工事費は、単段式・多段式及び片吸込・両吸込ポンプに適用する。
 - 6. 水中ポンプ及び立軸渦巻ポンプの据付工事費に適用する。ただし、水中ポンプの吐出し管が鋼製又は鋳鉄製の場合とし、コラム着脱式水中ポンプには適用出来ない。
 - 7. この基準は、高 NS・高流速ポンプに適用出来るが、可動翼ポンプ等の特殊ポンプには、適用出来ない。

(2) ポンプ吐出量 (m³/min) 範囲の標準値

この基準を適用するポンプ設備の場合、ポンプ吐出量 (m^3/min) 範囲の標準値は、表 $-4\cdot3$ による。

表-4・3 ポンプ吐出量 (m³/min) 範囲の標準値

全形式(横軸渦巻形式・立軸渦巻形式・水中形式のポンプ吐出量 36.0m3/min 以下を除く) に適用

ポンプ実吐出量 範囲(m³/min)	12超 23以下	23超 36以下	36超 50以下	50超 70以下	70超 90以下	90超 115以下	115超 150以下	150超 200以下
ポンプ吐出量標準値 (m³/min)	20	31	44	60	79	100	124	181
ポンプロ径 (mm)	400	500	600	700	800	900	1, 000	1, 200

ポンプ実吐出量	200超	255超	325超	400超	480超	600超	740超
範囲 (m³/min)	255以下	325以下	400以下	480以下	600以下	740以下	850以下
ポンプ吐出量標準値 (m³/min)	233	291	360	434	543	664	799
ポンプロ径 (mm)	1, 350	1,500	1,650	1,800	2,000	2, 200	2, 400

横軸渦巻形式・立軸渦巻形式・水中形式のポンプ吐出量 36.0m3/min 以下に適用

ポンプ実吐出量 範囲(m³/min)	0.10超 0.20以下	0.20超 0.35以下	0.35超 0.45以下	0.45超 0.70以下	0.70超 1.20以下	1.20超 1.80以下	1.80超 3.00以下
ポンプ吐出量標準値 (m³/min)	0. 2	0. 3	0. 4	0. 6	0.9	1. 4	2. 1
ポンプロ径 (mm)	40	50	65	80	100	125	150

ポンプ実吐出量 範囲(m³/min)	3.0超 5.0以下	5.0超 8.0以下	8.0超 12.0以下	12.0超 18.0以下	18.0超 23.0以下	23.0超 28.0以下	28.0超 36.0以下
ポンプ吐出量標準値 (m³/min)	4	7	10	15	20	25	31
ポンプロ径 (mm)	200	250	300	350	400	450	500

2 直接製作費

2-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=主要部材費+副部材費+部品費+補助材料費

(2) 主要部材費

1) 主要部材費の積算は、次式による。

主要部材費(円/式) = Σ {各主要部材所要量 (Kg/式) ×各主要部材単価(円/kg)} 各主要部材所要量 (Kg/式) =標準ポンプ全部材所要量 (Kg/台) ×各部材別構成率 (%) なお,各区分毎の主要部材の範囲は,表-4・4のとおりとする。 標準ポンプ全部材所要量 は,(6)項による。

表-4・4	主要部材の範囲
	十一世が壮の悠田

区	分	主要部材の範囲 (所要量を積上げる部材)
横軸軸流ポンプ	ポンプ本体	ケーシング (上部・下部・吸込・点検穴カバー・ポンプ脚), 羽根車 (羽根・ハブ), 主軸
横軸斜流ポンプ	ポンプ本体	ケーシング (上部・下部・吸込・点検穴カバー・ポンプ脚), 羽根車 (羽根・ハブ), 主軸
立軸軸流ポンプ (一床式)	ポンプ本体	ケーシング (吐出ボウル・吐出エルボ・揚水管・吸込ベル), 羽根車 (羽根・ハブ), 主軸 (上部軸・下部軸)
立軸軸流ポンプ (二床式)	ポンプ本体	ケーシング (吐出ボウル・吐出エルボ・揚水管・吸込ベル), 羽根車 (羽根・ハブ), 主軸 (上部軸・下部軸)
立軸斜流ポンプ (一床式)	ポンプ本体	ケーシング (吐出ボウル・吐出エルボ・揚水管・吸込ベル), 羽根車 (羽根・ハブ), 主軸 (上部軸・下部軸)
立軸斜流ポンプ (二床式)	ポンプ本体	ケーシング (吐出ボウル・吐出エルボ・揚水管・吸込ベル), 羽根車 (羽根・ハブ), 主軸 (上部軸・下部軸)
横軸渦巻ポンプ (両吸込)	ポンプ本体	ケーシング、羽根車、主軸
フラップ弁	弁本体	フラップ弁(弁胴、弁体、弁棒)
立軸軸流・斜流ポ ンプ原動機 (減速 機) 架台	架台本体	原動機(減速機)架台(脚材,桁材,対傾材,床材,補助材)

2) 主要部材単価は、「第1章 一般共通」直接材料費に準じる。

(3) 副部材費

副部材費の積算は, 次式による。

副部材費=主要部材費×副部材費率(%)

なお、各区分毎の副部材の品目は、表-4・5のとおりとする。

また、副部材費率は、表 $-4\cdot6$ による。

表-4・5 副部材の品目

スリープ (パッキン部,水中軸受部),水切りつば,ケーシングライナー,パッキン押え,封水リング,羽根キー,ライナーリング,中間軸継手,パッキン箱,軸受支え,ソールプレート,横軸渦巻ポンプの架台 (共通ベット含む)等

区	分	副部材費率	
横軸軸流ポンプ		F 0	
横軸斜流ポンプ		5. 0	
立軸軸流ポンプ	(一床式)		
立 単山単田 (川 ハ ン)	(二床式)	6. 0	
立軸斜流ポンプ	(一床式)	0.0	
立、甲山赤平加ハンノ	(二床式)		
横軸渦巻ポンプ(両吸	12.0		
フラップ弁	3.0		
立軸軸流・斜流ポンフ	『原動機(減速機)架台	0.0	

(4) 部品費

部品費の積算は, 次式による。

部品費=主要部材費×部品費率(%)

なお, 部品費率に含まれる部品の品目は, 表 $-4\cdot7$ のとおりとする。 また, 部品費率は, 表 $-4\cdot8$ による。

表-4・7 部品の品目

区 分	部 品 の 品 目
ポンプ本体	水中軸受・玉軸受類(セラミック軸受,無給水軸封装置及び,節水型軸封装置は除く),軸継手,パッキン(0リング,グランド),羽根車ナット,ボルト・ナット,圧力計,連成計,満水検知器,各種スイッチ,各種リレー等
主配管(吸込管・吐出管)	パッキン (0 リング), ボルト・ナット等
フラップ弁	水密ゴム,ボルト・ナット等
立軸軸流・斜流ポンプ原動機 (減速機) 架台	ボルト・ナット等

表-4・8 部品費率

		20 · · · Al-HH2C1		
ポンプ形式		部品費率算定式	備考	
横軸軸流ポンプ		$Y = 0.00012X^2 - 0.1541X + 76.8$		
横軸斜流ポンプ		$Y = 0.00008X^2 - 0.1027X + 43.5$		
立軸軸流ポンプ	(一床式)	$Y = 0.00028X^2 - 0.2033X + 61.2$	吸込管,吐出管,フラップ弁の	
17.甲田甲田(元(ハン))	(二床式)	$Y = 0.00004X^2 - 0.0514X + 59.7$	部品及び立軸軸流・斜流ポンプ 原動機(減速機)架台の部品を	
立軸斜流ポンプ	(一床式)	$Y = 0.00028X^2 - 0.2033X + 51.8$	含む。	
立 押田ボキがに ハン ノ	(二床式)	$Y = 0.00002X^2 - 0.0433X + 53.7$		
横軸渦巻ポンプ(両吸込)	$Y = 0.00084X^2 - 0.41X + 65.8$		
フラップ弁		ポンプ部品費に含む。		
立軸軸流・斜流オ (減速機) 架台	ポンプ原動機	ポンプ部品費に含む。		

- (注) 1. 上表中の Y は部品費率 (%), X はポンプ吐出量 (m^3/\min) であり、ポンプ吐出量 (m^3/\min) の標準値は、表 $-4\cdot3$ を適用する。
 - 2. 部品費率 (%) は、小数第1位を四捨五入して、整数とする。
 - 3. 吸込管・吐出し管・フラップ弁及び立軸軸流・斜流ポンプ原動機(減速機)架台の部 品を含む。

4. 立軸ポンプのスラスト軸受(ポンプ支持)は、部品費率に含まれている。ただし、減速機支持形式のスラスト軸受は、減速機本体(機器単体品)で計上する。

(5) 補助材料費

補助材料費の積算は次式による。

補助材料費=(主要部材費+副部材費)×補助材料費率(%)

なお、補助材料費率に含まれる補助材料の品目は、表 $-4\cdot9$ のとおりとする。また、補助材料費率は、表 $-4\cdot10$ によるものとする。

表-4・9 補助材料の品目

主ポンプ本体・立軸軸流・斜斜ポンプの原動機(減速機)架台・フラップ弁の工場塗装の塗料・接着 材料及び溶接材料等

表-4・10	補助材料費率	(%)
補助材料費率	4	

(6) 標準揚排水ポンプ部材所要量(ポンプ本体)

標準揚排水ポンプの各部材所要量は, 次式による。

標準揚排水ポンプ各主要部材所要量 (y) = (G+gk) ×Kh×Kk (%)

G:ポンプ形式区分毎1台当りの標準ポンプ全部材所要量(kg/台)

gk : 立軸軸流・斜流ポンプのコラム長による補正質量 (kg)

Kh : 横軸渦巻ポンプ (両吸込) の場合の全揚程による質量補正係数 Kk : 標準ポンプの部材別 (ケーシング・羽根車・主軸) 構成率 (%)

1) 標準ポンプ全部材所要量(G)

標準ポンプ全部材所要量は、表-4・11を標準とする。

表-4・11 標準揚排水ポンプ全部材所要量(G)

ポンプ形式		全部材所要量算定式	備	考
横軸軸流ポンプ		$G = 0.0080X^2 + 32.774X + 110.6$		
横軸斜流ポンプ		$G = 0.0087X^2 + 47.359X - 85.64$		
	(一床式)	$G = -0.0568X^2 + 72.378X + 282.17$		
立軸軸流ポンプ	(二床式)	$G = -0.0245X^2 + 66.128X + 553.98$		
立軸斜流ポンプ	(一床式)	$G = -0.0265X^2 + 68.064X + 784.84$		
11年日末年7月17トン ノ	(二床式)	$G = -0.0019X^2 + 65.029X + 1333.18$		
横軸渦巻ポンプ (両吸込)		$G = -0.0955X^2 + 99.949X + 97.84$		

- (注) 1. 上表中の G は標準ポンプ全部材所要量(kg/台), X はポンプ吐出量 (m^3/min) であり、ポンプ吐出量 (m^3/min) 標準値は、表 $-4\cdot3$ を適用する。
 - 2. 上記の標準ポンプ全部材所要量(主要部材所要量+副部材所要量)の内容は以下のとおりである。
 - (1) 立軸軸流・斜流ポンプ (一床・二床式) は,据付床面から吸込ベルマウス下端 (コラム長) まで 4.0m (ポンプ吐出量 480m³/min 超は 4.5m) を標準とする。
 - (2) 立軸軸流・斜流ポンプ (一床・二床式) のスラスト力支持方式は、ポンプ支持又は減速機 (原動機) 支持とする。
 - (3) 横軸軸流・斜流ポンプ, 立軸軸流・斜流ポンプ (一床・二床式) には, ポンプ用 架台を含むが原動機用架台及び減速機用架台は含まない。

- (4) 横軸渦巻ポンプ (両吸込) には、ポンプ架台又は、原動機共通架台を含む。
- (5) 横軸渦巻ポンプ (両吸込) には、カップリング兼用型フライホイールは含むが、 専用フライホイールは含まない。
- (6) 横軸渦巻ポンプ (両吸込) は、全揚程 50m までのポンプ全部材所要量である。 全揚程が 50m を超えるポンプは、質量補正係数 (Kh) により補正する。
- 3. ポンプ主部材の標準材質 ポンプ主要部材の標準材質は、表-4・12 を標準とする。

表-4・12 ポンプ主要部材の標準材質

ポンプ形式	ケーシング	羽根車	主軸
横軸軸流ポンプ	FC	CAC • SC • SCS	SUS ⋅S−C
横軸斜流ポンプ	FC	CAC • SC • SCS	SUS ⋅S−C
立軸軸流ポンプ(一床・二床式)	FC	CAC • SC • SCS	SUS ⋅S−C
立軸斜流ポンプ(一床・二床式)	FC	CAC • SC • SCS	SUS ⋅S−C
横軸渦巻ポンプ (両吸込)	FC • FCD	CAC • SC • SCS	s-c

- (注) ポンプを構成する材料に特殊材料を用いた場合は、特殊材料の単価を計上し、部材所要量の 補正は行わない。
- 2) 立軸軸流・斜流ポンプのコラム長による補正質量 (gk)

立軸軸流・斜流ポンプ (一床・二床式) のコラム長による補正質量 (gk) は、次式による。なお、コラム単位質量は、表 $-4\cdot13$ を標準とする。

立軸軸流・斜流ポンプのコラム長による補正質量(gk)=

{立軸軸流・斜流ポンプのコラム長 (m) −4.0m (ポンプ吐出量 480m³/min 以上は, 4.5m)} ×コラム単位質量 (kg/m)

表-4・13 コラム単位質量

(kg/m)

ポンプ形式	コラム単位質量算定式	備	考
立軸軸流ポンプ (一床・二床式) 立軸斜流ポンプ (一床・二床式)	コラム単位質量=-0.0011X²+5.1977X+151.8		

- (注) 1. 上表中の X はポンプ吐出量 (m³/min) であり、ポンプ吐出量 (m³/min) の標準値は、表-4・3 を適用する。
 - 2. 立軸軸流・斜流ポンプ (一床・二床式) のコラム長は、据付床面から吸込ベルマウス 下端までの長さが 4.0m (ポンプ吐出量 480m³/min 以上は 4.5m) を標準とし、標準と 異なる場合には、±0.1m 単位 (小数第 2 位切り捨て) で補正する。
 - 3. コラム単位質量には、揚水管質量、主軸質量、中間軸受及び軸継手質量を含んでいる。
 - 4. 高 NS・高流速ポンプの場合は、表-4・13 コラム単位質量で求めた質量に 0.94 を乗じた質量を補正質量とする。
- 3) 横軸渦巻ポンプ (両吸込) の全揚程による質量補正係数 (Kh)

横軸渦巻ポンプ (両吸込) の全揚程が 50m を超え 140m までの場合の質量補正係数 (Kh) は、 次式を標準とする。なお、全揚程が 50m 以下の場合は補正しない。

 $Kh = H^{0.18} - 1.02$

Kh: 横軸渦巻ポンプ (両吸込) の全揚程による質量補正係数

H:ポンプ全揚程(m)(50mを超え140m以下)

4) 標準ポンプ部材構成率 (Kk)

標準ポンプ全部材所要量の部材別構成率(Kk)は、表-4・14を標準とする。

表-4・14 標準ポンプ部材別構成率(Kk)

(%)

部材名		3	主要部材構成率	副部材 構成率	計	
ポンプ形式		ケーシング	羽根車	主軸	副部材	
横軸軸流ポンプ		74. 4	8.3	8.7	8.6	100.0
横軸斜流ポンプ		72. 9	9. 0	9. 1	9. 0	100.0
	(一床式)	81.3	3. 3	6.9	8. 5	100.0
立軸軸流ポンプ	()(1)	(73. 2)	(2.9)	(6. 9)	(8.5)	(91.5)
立事中中のルバンク	(二床式)	79.3	3. 9	7.4	9. 4	100.0
		(71.4)	(3. 4)	(7.4)	(9.4)	(91.6)
	(一,	78. 9	4.5	7.8	8.8	100.0
立軸斜流ポンプ	(一床式)	(71.0)	(4. 0)	(7.8)	(8.8)	(91.6)
立、中田示すがいいくノ	(二床式)	76.8	5. 5	8.5	9. 2	100.0
		(69. 1)	(4.8)	(8.5)	(9. 2)	(91.6)
横軸渦巻ポンプ	(両吸込)	73. 1	5. 6	8.7	12. 6	100.0

- (注) 1. 上表中の副部材は、副部材費で計上する。
 - 2. 上表中の()の数値は、ポンプ特性が高 NS・高流速であるポンプに適用する。
 - 3. 横軸軸流・斜流ポンプの羽根車には、羽根車の他に羽根車キャップも含む。
 - 4. 立軸軸流・斜流ポンプ (一床・二床式) の主軸には、ポンプと原動機 (減速機) 間も含む。

(7) フラップ弁部材所要量

1) フラップ弁標準全部材所要量

横軸軸流・斜流及び立軸軸流・斜流ポンプ (一床・二床式) の吐出し管端部のフラップ弁全部材所要量は、表-4・15を標準とする。

表-4・15 フラップ弁標準全部材所要量

(kg/台)

フラップ弁形式		大			形						
フラップ弁口径 (mm)	600	700	800	900	1,000	1, 200	1, 350	1,500	1,650	1,800	2,000
質量(kg/台)	145	193	256	332	422	645	849	1,084	1, 351	1,649	2,096

フラップ弁形式	角	l	形		
フラップ弁寸法(mm)縦×横	1,800×2,600	$2,000 \times 2,900$	$2,200 \times 3,100$	$2,400 \times 3,400$	
質量(kg/台)	3, 364	4, 321	5, 645	7, 337	

(注) フラップ弁の主要部材の材質は、表-4・16を標準とする。

表-4・16 フラップ弁主要部材標準材質

フラップ弁形式	弁 胴	弁 体	弁 棒	
丸 形	FC	SS	SUS	
角 形	SS • FC	SS	SUS	

2) フラップ弁各部材構成率

フラップ弁の各部材構成率は、表-4・17を標準とする。

表-4・17 フラップ弁各部材構成率

(%)

	部材名フラップ弁形式		主要部材構成率			副部材構成率	計
			弁 胴	弁 体	弁 棒	副部材	ĒΙ
	丸	形	73. 3	23. 2	1. 3	2. 2	100.0
	角	形	70. 3	26. 3	1.0	2. 4	100.0

(注) 上表中の副部材は、副部材費で計上する。

(8) 立軸軸流・斜流ポンプの原動機(減速機)架台標準全部材所要量

立軸軸流・斜流ポンプ(一床・二床式)の原動機架台又は減速機架台の標準全部材所要量は、表 -4・18を標準とする。

表-4・18 立軸軸流・斜流ポンプの原動機(減速機)架台の標準全部材所要量 (kg/基)

ポンプ形式	原動機 (減速機) 架台の標準全部材所要量算定式	備考	
立軸軸流・斜流ポンプ (一床式) 架台	架台所要量(G ₁)=-0.0038X ² +18.1X+90.5	1	
立軸軸流・斜流ポンプ(二床式)架台	架台所要量 (G ₂) =-0.0047X ² +14.168X+182.5		

- (注) 1. 上表中の G_1 , G_2 は,原動機(減速機)架台の標準所要量(kg/基),X はポンプ吐出量(m^3/\min)であり,ポンプ吐出量(m^3/\min)の標準値は,表 $-4\cdot3$ を適用する。
 - 2. 原動機架台又は減速機架台の材質は、鋼板製 (SS 材 t=12~25mm) を標準とする。
 - 3. 立軸軸流・斜流ポンプ (一床・二床式) で原動機 (減速機) 架台を設置する場合に 計上する。
 - 4. 立軸軸流・斜流ポンプ (一床・二床式) でポンプ直上に設置される原動機架台又は, 減速機架台 (複合減速機除く) の標準全部材所要量であり, 二床式により原動機が横 に設置される場合の原動機架台は含まない。なお, この場合の原動機架台は, 原動機 本体と一括して機器単体費で計上する。

2-2 機器単体費

機器単体費として計上する品目は、表-4・19のとおりとする。

表-4・19 機器単体品目

セラミック軸受,無給水軸封装置,節水型軸封装置,原動機(電動機・ディーゼルエンジン・ガスタービンエンジン),原動機の吸排気管・ダクト,消音器,減速機,流体継手,主配管用弁(フラップ弁を除く),各種補助ポンプ,空気圧縮機,管内クーラ,クラッチ,フライホイール,主配管(吸込管・吐出管及び横軸ポンプの吸込管),可撓管,伸縮管継手,天井クレーン,ホイスト,チェーンブロック,受配電盤,無停電電源装置,直流電源装置,始動用抵抗器,速度制御用抵抗器,自動制御機器,自家発電装置,監視操作盤,接続端子盤,計装機器(水位測定装置,流量測定装置,濃度計等),給油装置,油圧シリンダ,油圧ユニット,油圧ポンプ,油圧モータ,グリースポンプ類,燃料貯油槽、燃料小出槽,凍結防止装置等

- (注) 1. 原動機,減速機,主配管用弁(フラップ弁除く)に付属するセンサー及び計器類は,機器単体費で本体と一括して計上する。
 - 2. 原動機と一体的な鋼製ベース(架台)は原動機本体価格に含め、機器単体品として計上する。
 - 3. セラミック軸受は機器単体品で計上し、ゴム軸受、メタル軸受は部品費として計上する。

2-3 製作工数

製作工数は, 次式による。

$Y = (y+yk+yf+ym) \times Kn$

Y: ポンプ形式区分毎1台当りの製作工数(人/台)

y: ポンプ形式区分毎1台当りの標準製作工数(人/台)

yk: 立軸軸流・斜流ポンプ (一床・二床式) のコラム長による補正工数 (人/台)

yf: フラップ弁の標準製作工数(人/台)

ym: 立軸軸流・斜流ポンプ (一床・二床式) の原動機 (減速機) 架台の標準製作工数

(人/基)

kn: ポンプ製作数による補正係数

(1) ポンプ形式区分毎1台当り標準製作工数 (y)

ポンプ形式区分毎1台当りの製作工数 (y) は、表 $-4\cdot20$ を標準とする。

ポンプ形式		ポンプ標準製作工数算定式	摘要
横軸軸流ポンプ		$y = -0.0006X^2 + 1.02X + 28.3$	
横軸斜流ポンプ		$y = -0.0005X^2 + 1.192X + 26.5$	
-latel tel >+ 18 > 8	(一床式)	$y = -0.0010X^2 + 1.787X + 78.7$	
立軸軸流ポンプ	(二床式)	$y = -0.0006X^2 + 1.794X + 86.8$	
立軸斜流ポンプ	(一床式)	$y = -0.0004X^2 + 2.088X + 77.4$	
	(二床式)	$y = -0.0002X^2 + 2.113X + 87.0$	
横軸渦巻ポンプ (両吸込)		$y = -0.0018X^2 + 1.818X + 33.8$	

表-4・20 ポンプ標準製作工数 (y) (人/台)

- (注) 1. 上表中の y はポンプ標準製作工数 (人/台), X はポンプ吐出量 (m^3/min) であり, ポンプ吐出量 (m^3/min) の標準値は、表 $-4 \cdot 3$ を適用する。
 - 2. 高 NS・高流速ポンプの場合は、上式で算出した標準製作工数に 0.97 を乗じるものとする。ただし、特殊ポンプ (可動翼等) は別途積算する。
 - 3. ポンプ主要部材の材質が標準材質と異なる場合であっても、ポンプ標準製作工数を適用する。
 - 4. 立軸軸流・斜流ポンプ (一床・二床式) の標準製作工数には, 原動機架台又は減速

機架台を含まない。

- 5. 立軸軸流・斜流ポンプ (一床・二床式) の標準製作工数は, 据付床面から吸込ベルマウス下端 (コラム長) までの長さが 4.0m (ポンプ吐出量 480m³/min 以上は 4.5m) の場合の工数である。
- 6. 横軸軸流・斜流ポンプ及び横軸渦巻ポンプ(両吸込)の水中軸受はメタル軸受,立 軸軸流・斜流ポンプ(一床・二床式)の水中軸受はセラミック軸受を標準とする。
- 7. 標準製作工数には、工場塗装・工場社内試験及び工場立会確認のために必要となる 製品の仮組立・調整・解体に直接従事する工場作業員の工数を含む。
- 8. 標準製作工数には、木型の製作に要する工数は含まない。
- (2) 立軸軸流・斜流ポンプのコラム長による補正工数 (yk)

立軸軸流・斜流ポンプのコラム長による補正工数(yk)は、次式による。

立軸軸流・斜流ポンプのコラム長による補正工数 (yk) = {立軸ポンプのコラム長 (m) -4.0m (ポンプ吐出量 480m³/min 以上は 4.5m)} ×コラム長単位工数 (人/m)

なお、コラム長単位工数は、表-4・21を標準とする。

表-4・21 立軸ポンプコラム長単位工数

(人/m)

ポンプ形式	立軸ポンプコラム長単位工数算定式	摘	要
立軸軸流ポンプ (一床・二床) 立軸斜流ポンプ (一床・二床)	コラム単位工数 = 0.0765 X + 5.9		

- (注) 1. 上表中の X はポンプ吐出量 (m³/min) であり, ポンプ吐出量 (m³/min) の標準値 は、表-4・3 を適用する。
 - 2. 立軸ポンプのコラム長が 4.0m (ポンプ吐出量 480m³/min 以上は 4.5m) 以外の場合, コラム長による補正を±0.1m 単位 (小数第 2 位切り捨て) で補正を行う。
 - 3. 高 NS・高流速ポンプの場合は、上式で算出した単位工数に 0.97 を乗じるものとする。ただし、特殊ポンプ (可動翼等) は別途積算する。

(3) フラップ弁の標準製作工数 (yf)

ポンプ吐出管端部にフラップ弁を設置する場合の製作工数(yf)は,表-4・22を標準とする。

表-4・22 フラップ弁標準製作工数(yf)

(人/台)

フラップ弁形式	丸 形										
フラップ弁口径 (mm)	600	700	800	900	1000	1200	1350	1500	1650	1800	2000
製作工数 (人/台)	8.3	9.8	11.7	14.0	16.6	22. 9	28.6	35. 1	42. 5	50.6	62. 7

フラップ弁形式	角		フラップ弁形式 角			形
フラップ弁寸法(mm)縦×横	1800×2600	2000×2900	2200×3100	2400×3400		
製作工数(人/台)	88. 4	112. 3	137. 7	164. 7		

- (注) 1. フラップ弁の製作数による補正は、ポンプ製作の製作数による補正(表-4・24)を 用いるものとする。
 - 2. フラップ弁主要部材の材質が標準材質と異なる場合であっても、フラップ弁標準製作工数を適用する。
- (4) 立軸軸流・斜流ポンプの原動機 (減速機) 架台の標準製作工数 (ym) 立軸軸流・斜流ポンプの原動機 (減速機) 架台の標準製作工数 (ym) は,表-4・23 を標準とする。

表-4・23 立軸ポンプ原動機 (減速機) 架台標準製作工数 (ym)

ポンプ形式	原動機(減速機)架台 標準製作工数算定式	備考
立軸軸流・斜流ポンプ(一床式)架台	架台製作工数=0.0149G ₁	G1: 立軸軸流・斜流 (一床式) ポンプ 架台全部材所要量 (kg/基)
立軸軸流・斜流ポンプ(二床式)架台	架台製作工数=0.0149G ₂	G ₂ : 立軸軸流・斜流 (二床式) ポンプ 架台全部材所要量 (kg/基)

- (注) 1. 立軸軸流・斜流ポンプ (一床・二床式) で原動機 (減速機) 架台を設置する場合に 計上する。
 - 2. 上表中の摘要欄の立軸軸流・斜流 (一床・二床式) 架台所要量 (kg/基) は,表-4・18 により算出した質量を用いる。
 - 3. ポンプ直上に設置される原動機架台又は、減速機架台(複合減速機を除く)の製作工数であり、二床式により原動機が横に設置される場合の原動機架台は含まない。なお、この場合の原動機架台は原動機本体に含めて機器単体費で計上する。
 - 4. 原動機 (減速機) 架台の製作数による補正は、ポンプ製作数による補正係数 (表-4・24) を用いる。

(5) ポンプ製作台数による補正係数 (Kn)

同一形式・寸法のものを複数台同時発注する場合のポンプ製作台数による補正係数 (Kn) は、表 —4・24 を標準とする。

表-4・24 ポンプ製作台数による補正係数 (Kn)

製作数(台)	1	2	3	4 台以上
補正係数	1.00	0. 97	0.95	0. 94

2-4 工場塗装費

工場塗装の材料費は、補助材料費に含まれる。

工場塗装の労務は、ポンプ製作工数に含まれる。

2-5 直接経費

(1) 木型費

木型費は, 次式による。

$$P = A \times \frac{1 + \beta (n-1)}{n}$$

P:木型費(円/台)

A:木型製作価格(円/台)

β:2台目以上の補修費率 0.03

n:ポンプ発注台数

(注) 1. 標準揚排水ポンプ本体に適用する。

- 2. 同一形式,同一寸法のポンプを同時(連続)発注する場合で,1~4台のポンプ製作に適用する。なお,同時(連続)発注とは,初年契約日から24ヶ月未満に連続して発注する場合をいう。
- 3. 標準揚排水ポンプ以外のポンプ (大吐出量・可動翼等の特殊ポンプ) 及び 5 台以上 の製作を行う場合は、別途計上する。

3 直接工事費

3-1 材料費

(1) 材料費の構成

材料費の構成は、次式のとおりとする。

材料費=据付材料費+据付補助材料費

(2) 据付材料費

据付材料費は、ポンプ設備及びポンプ用電気設備の材料費であり、建築関係の材料は含まない。 据付材料費の積算は、次式による。

据付材料費=ポンプ設備据付材料費+付帯設備据付材料費

1) ポンプ設備据付材料費

ポンプ設備据付材料費の積算は、次式による。なお、職種別構成割合は、表 $-4 \cdot 29$ のとおりとする。

ポンプ設備据付材料費(円)=ポンプ設備据付労務費(円)

×ポンプ設備据付材料費率(%)×小配管材料補正係数

(0/_)

ポンプ設備据付労務費は、据付対象設備の据付けに従事する機械設備据付工・普通作業員・ 電工の労務費をいい、別途計上される土木工事、電気工事費中の労務費は対象にしない。

なお、ポンプ設備据付材料費率は、表 $-4 \cdot 25$ による。

	衣一4・20 小フノ設備が竹竹村資平	(70)	
原 動 機 種 別	ポンプ形式	ポンプ設備据付 材 料 費 率	
	横軸渦巻ポンプ(両吸込・片吸込)	52	
電動機	横軸軸流・斜流ポンプ	35	
电 期 傚	立軸軸流・斜流ポンプ (一床・二床式)	28	
	立軸渦巻ポンプ (斜流)・水中ポンプ (固定・着脱)	20	
ディーゼルエンジン	横軸軸流・斜流ポンプ・横軸渦巻ポンプ (両吸込・片吸込)	38	
/ 1 ー ビルエンシン	立軸軸流・斜流ポンプ(一床・二床式)	29	
ガスタービンエンジン	立軸軸流・斜流ポンプ(一床・二床式)	17	

表-4・25 ポンプ設備据付材料費率

- (注) 1. ポンプ設備据付材料費率に含まれる小配管材料,電気配線配管材料及びその他材料は,次のとおりとする。
 - (1) 小配管材料は、ポンプ・原動機・減速機・主配管用弁・主配管(吸込管、吐出し管)・計測機器等に配管される水・油・燃料・空気用の小配管(排気管は機器単体費で計上するため除く)、小配管用弁、小配管用ボルト・ナット・パッキン、断熱材料(排気ダクト内は除く)等である。
 - (2) 電気配線配管材料は、受配電盤からポンプ・原動機・減速機・バルブ・計測機器・ 監視制御盤等に結線される電気の配線材料(水位計配線含む)、配線用配管材料、配 線支持材、配線ピット用材料(蓋含む)、ハンドホール等である。
 - (3) その他材料の範囲は、小配管ピット用材料 (蓋含む)、ステー材、アンカー材、小配管貫通部の二次コンクリート、仕上モルタル等とし、シンダーコンクリート・スラストブロック・掘削埋戻工・盛土工は含まない。
 - 2. 機場 (敷地) 内設備に使用する据付材料費とする。
 - 3. 水用小配管の標準材質はステンレス管とする。水用小配管に SGP 等の普通鋼管を使用した場合は、上表の値に 0.9 を乗じる。

4. ポンプ設備の受電電圧は、高圧受電を標準としているので、低圧受電の場合は、ポンプ設備据付材料費率に下表の値を乗じる。

表-4・26 低圧受電の補正係数 (%

原動機種別	低圧受電の補正係数
電動機	57
ディーゼルエンジン	86
ガスタービンエンジン	77

2) 付帯設備据付材料

付帯設備据付材料費の積算は、次式による。

ただし、低圧受電の受変電設備については、次式によらず必要材料を積上げ計上するものと する。

付帯設備据付材料費(円)=付帯設備据付労務費(円)×付帯設備据付材料費率(%)

なお、職種別構成割合は、表 $-4\cdot29$ のとおりとする。また、付帯設備据付材料費率は、表 $-4\cdot27$ による。

付帯設備据付労務費は、据付対象設備の据付けに従事する機械設備据付工・普通作業員・電工の労務費をいい、別途計上される土木工事、電気工事費中の労務費は対象にしない。

表-4・27 付帯設備据付材料費率 (%)

付	带設備種別	付帯設備据付材料費率	適用条件	備考
受変電設備	電動機	$y = 395.50 \text{kW}^{-0.4313}$	kW≦5000	
(高圧受電)	ディーゼルエンジン ガスタービンエンジン	$y = 376.19 \text{kW}^{-0.3659}$	kW≦10000	kW:原動機出力
天井	ウレーン設備	1.0	_	_

- (注) 1. 受変電設備の据付材料とは、引込設備材料(引込柱・柱上気中開閉器・腕金・アレスター)、引込設備から受変電設備及び受配電設備間の配線材料、配線用配管材料(ハンドホールを含む)等である。
 - 2. 天井クレーンの据付材料とは、ステー材、アンカー材、配管貫通部の二次コン、仕上モルタル、配線材料、配線用配管材料、配線支持材、配線ピット用材料(蓋含む)等である。
 - 3. 工数算定式の kW は原動機出力であり、主ポンプの原動機出力の合計とする。
 - 4. 原動機出力が PS 表示 (ディーゼルエンジン) の場合は次式で kW に換算した値を使用する。

$kW=PS \times 0.735$

5. 原動機種別が異なる設備工事の据付工数算出は,原動機種別(電動機及びエンジン)を各々で算出し合算する。

(3) 据付補助材料費

据付補助材料費とは、ポンプ設備据付(電気工事含む)において補助的に消費される材料(ライナー、シム、溶接棒、アセチレンガス、酸素、塗料、接着剤等)である。

据付補助材料費の積算は、次式による。なお、据付補助材料費率は、表-4・28による。

据付補助材料費=据付労務費(円)×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工・普通作業員・電工の労務費を いい別途計上される土木工事、電気工事費中の労務費は対象にしない。

表-4・28 据付補助材料費率 (%)

据付補助材料費率	2. 0

3-2 据付工数

据付労務費の積算は, 次式による。

据付労務費 = ポンプ設備据付労務費 + 付帯設備据付労務費

据付工数は、ポンプ設備据付工数と付帯設備据付工数で構成し、職種別構成割合は、表-4・29 を標準とする。

表-4・29 ポンプ設備据付工数の職種別構成割合

(%)

区 分	機械設備据付工	普通作業員	電工
ポンプ設備据付工数	60	15	25
付帯設備(受変電設備)据付工数	30	_	70
付帯設備(天井クレーン)据付工数	80	20	_

- (注) 1. 上表に示す区分毎に算出した据付工数に、職種別構成割合を乗じて職種別据付工数 を算出する。
 - 2. 付帯設備据付工数の職種別構成割合は、受変電設備据付又は天井クレーン据付の場合の構成割合であり、他設備の場合は別途考慮する。

(1) ポンプ設備据付工数

ポンプ設備据付工数は,次式による。

 $Ym = \Sigma (Ymi \times Kmi \times Ks \times Kmn) + \Sigma (\Sigma (Yf) \times Kmn)$

Ym: 設備 N 台当りのポンプ設備据付工数 (人)

Ymi: 設備1台当りのポンプ設備標準据付工数(人/台)

Kmi: 原動機種別による設備標準据付工数の補正係数

Ks: 無給水化による補正係数

Kmn: 据付数によるポンプ設備標準据付工数の補正係数

Yf: 立軸渦巻ポンプ (斜流) の中間軸受装置 (中間床) 据付工数 (人/箇所)

1) ポンプ設備標準据付工数 (Ymi)

ポンプ設備標準据付工数 (Ymi) は、表 $-4 \cdot 30$ による。

表-4・30 ポンプ設備標準据付工数 (Ymi)

(人/台)

ポンプ形式	ポンプ実吐出量範囲 (m³/min)	標準据付工数算定式	備考
横軸軸流・斜流ポンプ	12 超 600 以下	$y = -0.0012X^2 + 1.622X + 65.66$	
立軸軸流・斜流ポンプ(一床式)	12 超 325 以下	$y = -0.0030X^2 + 2.304X + 49.68$	
立軸軸流・斜流ポンプ(二床式)	12 超 850 以下	$y = -0.0008X^2 + 1.640X + 91.19$	
横軸渦巻ポンプ (両吸込・片吸込)	0.1超 18以下	$y = -0.2317X^2 + 8.247X + 39.17$	
	18 超 200 以下	$y = -0.0026X^2 + 3.034X + 73.77$	
立軸渦巻ポンプ (斜流)	3 超 18 以下	$y = -0.1467X^2 + 6.998X + 36.19$	
立 型 型 型 で で の で の の の の の の の の の	18 超 200 以下	$y = -0.0041X^2 + 2.701X + 78.48$	引込設備 は低圧受
水中ポンプ(固定・着脱)	0.1 超 18 以下	$y = -0.1486X^2 + 4.326X + 7.71$	電の工数
八十小ノノ (回及・有肬)	18 超 90 以下	$y = -0.0038X^2 + 1.029X + 27.66$	

- (注) 1. 上表中の y は据付工数, X はポンプ吐出量(m³/min) であり, ポンプ吐出量(m³/min) の標準値は,表-4・3 を適用する。
 - 2. ポンプ設備標準据付工数に含まれる範囲は、次のとおりとする。
 - (1) ポンプ設備に関連する機器の据付け(主ポンプ,減速機,駆動原動機,架台,吸 吐出管,主配管用弁,継手,クラッチ,各種系統機器設備,燃料小出槽) 及び準 備,後片付けまでとする。
 - (2) ポンプ設備の運転操作に関連する盤等(補機盤,コントロールセンタ,直流電源装置(盤を含む),速度制御盤,中央監視盤,計装機器盤(水位計,流量計,圧力計等の表示盤),機場内操作盤(テレメータ・テレコントロール装置は除く),制御盤類)の据付け及び準備,後片付けまでとする。
 - (3) 主ポンプ及び補助機械類の機側操作盤(受電部,動力部が一面構造となった盤を含む)の据付け,並びに電気配管等の塗装。
 - (4) 計装機器の据付け及び電気室の受配電盤から各機器(原動機,減速機,主配管用 弁,補助機械類)並びに,各計装機器(水位計,圧力計,流量計等)への配線配管 及び接続。
 - 3. 横軸及び立軸の軸流・斜流形式の標準据付工数には、フラップ弁の据付け及び塗装を含み、横軸渦巻形式の標準据付工数には、屋外可とう管又は、集合管までの据付け及び塗装を含んでいる。
 - 4. 水中ポンプの標準据付工数は、吐出しエルボ(吐出し弁がある場合は吐出し弁)までを含んでいる。
 - 5. ポンプ設備の据付用クレーンは、天井クレーン又はトラッククレーンを標準とする。
 - 6. 鋼製の点検歩廊、手摺、階段等の据付工数は、「第18章 鋼製付属設備」による。
 - 7. 接地極までの配線配管は、標準据付工数に含むが、接地極の敷設は含まないので別 涂計上する。
 - 8. 標準ポンプ設備据付工数には、次のものが含まれていないので別途積算するものとする。
 - (1) 屋外に設置する燃料貯油槽,敷地外に設置する計装機器
 - (2) 配筋工事, さく井工事, 水替工事, 運搬路等の補修工事等の仮設費
 - (3) 二次コンクリート,各機器の基礎コンクリート,シンダーコンクリート等の土木 工事
 - (4) 受電点(第1柱)から受電盤までの引込工事,通信設備・吸排気ファン・ゲート 設備・除塵機設備・照明設備等に係る電気配線配管
 - (5) 電線布設に伴う掘削・埋戻・盛土等の土工
 - (6) CCTV カメラ,同制御盤,集中監視制御設備(運転支援,管理装置等),遠方操作盤(機場外),除塵及びゲート設備機側操作盤,非常用発電設備,電気室等に設置される受配電設備及び付属する操作・計装設備(中央操作盤,計装機器盤,遠方操作盤(機場内装置),始動用制御盤)
 - 9. 高 NS・高流速ポンプの場合は、上式で算出した標準据付工数に 0.9 を乗じるものと する。ただし、特殊ポンプ(可動翼等)は別途積算する。
- 2) 原動機種別による補正係数 (Kmi)

主ポンプ駆動用原動機種別による補正係数 (Kmi) は、表-4・31 を標準とする。

表-4・31 原動機種別による補正係数 (Kmi)

原動機種別	電動機	ガスタービンエンジン	ディーゼルエンジン
補正係数	0.95	1.00	1.05

3) 給水方式による補正係数 (Ks)

給水方式による補正係数(Ks)は、表-4・32を標準とする。

表-4・32 給水方式による補正係数 (Ks)

原動機種別補正項目	電動機	ディーゼルエンジン
給水方式補正係数	1. 10	1. 15

- (注) 1. ガスタービンエンジンについては、無給水を標準としている。
 - 2. 電動機駆動の無給水方式とは、ポンプ軸受にセラミック軸受を採用(立軸は標準)し、軸封部に無給水軸封装置を採用した場合とし、これ以外の場合は補正する。
 - 3. ディーゼルエンジン駆動の無給水方式とは、電動機駆動方式と同様にセラミック軸受・無給水軸封装置に加え、エンジン冷却水方式としてラジエタ方式又は管内クーラ・ 槽内クーラ等を採用した場合もしくは空冷エンジンを採用した場合とし、これ以外の場合は補正する。

4) 中間軸受装置据付工数 (Yf)

立軸渦巻ポンプ (斜流) に中間軸受装置 (中間床) を設ける場合の据付工数 (Yf) は、表-4・33 を標準とする。

表-4·33 中間軸受装置据付工数 (Yf)

(人/箇所)

ポンプ吐出量 (m³/min)	3 超	5 超	8 超	12 超	18 超	23 超	28 超
	5 以下	8 以下	12 以下	18 以下	23 以下	28 以下	36 以下
中間軸受装置	4. 9	6. 1	7. 3	8. 5	9. 7	10.9	12. 2

ポンプ吐出量 (m³/min)	36 超	50 超	70 超	90 超	115 超	150 超
	50 以下	70 以下	90 以下	115 以下	150 以下	200 以下
中間軸受装置	14. 6	17.0	19. 5	21.9	24.3	29. 2

5) 据付数によるポンプ設備標準据付工数の補正係数 (Kmn)

同時期・同機場(敷地)にポンプを複数台据付ける場合の据付数によるポンプ設備標準据付工数の補正係数(Kmn)は、表-4・34を用いて、表-4・35に示す区分毎に補正する。

表-4・34 据付数によるポンプ設備標準据付工数の補正係数 (Kmn)

据付数(台)	1	2	3	4	5 台以上
補正係数	1.00	0.84	0.78	0.74	0.70

表-4・35 補正区分

補正区分	ポンプ形式区分					
立軸ポンプ	立軸軸流ポンプ (一床・二床式), 立軸斜流ポンプ (一床・二床式), 立軸渦巻ポンプ (斜流)					
横軸ポンプ	横軸軸流ポンプ, 横軸斜流ポンプ, 横軸渦巻ポンプ (両吸込・片吸込)					
水中ポンプ	水中ポンプ (固定・着脱)					

(2) 付帯設備(受変電設備)標準据付工数(Yj)

付帯設備(受変電設備)標準据付工数(Yj)は、表-4・36による。

表-4·36 付帯設備(受変電設備)標準据付工数(Yj)

(人/式)

原動機種別	工数算定式	適用条件	備考
電動機	$Yj=3.4515\times kW^{0.4313}$	kW≦5000	Yj:付帯設備(受変電設備)
ディーゼルエンジン ガスタービンエンジン	$Yj=3.6287 \times kW^{0.3659}$	kW≦10000	標準据付工数(人/式) kW:原動機出力(kW)

- (注) 1. 付帯設備(受変電設備)標準据付工数の範囲は,受電点(第1柱)から受電盤までの引込み工事,電気室等に設置される受配電設備(引込盤,受電盤,変圧器盤,電動器盤等)の据付けとする。
 - 2. 機側操作盤 (操作部,受電部,動力部が一面構造となった盤を含む) は含まない (ポンプ設備標準据付工数に含まれる)。
 - 3. 工数算定式の kW は原動機定格出力であり、主ポンプの原動機出力の合計とする。
 - 4. 原動機出力が PS 表示 (ディーゼルエンジン) の場合は, 次式で kW に換算した値を 使用する。

$kW=PS\times0.735$

- 5. 原動機種別が異なる設備工事の据付工数算出は,原動機種別(電動機及びエンジン) を各々で算出し合算する。
- 6. 低圧引込み設備の場合は、付帯設備(受変電設備)標準据付工数に0.92を乗じる。

(3) 付帯設備 (天井クレーン) 標準据付工数

付帯設備(天井クレーン)標準据付工数(Yti)は、表-4・37を標準とする。

表-4・37 天井クレーンの標準据付工数 (Yti) (人/台)

手動式	定格荷重 (t)	1	2	3. 2	5	7. 5	10
于劉氏	標準据付工数	9. 2	13.5	17.9	23. 2	27. 7	29.0

電動式	定格荷重(t)	7.5	10	12.5	13	15	20	22.5	25	30	35	40
电助八	標準据付工数	40.3	46. 2	52.8	54. 2	60. 1	77. 1	86.7	97. 0	119.9	145. 7	174. 6

- (注) 1. 手動式とは、巻上げは電動又は手動、移動は手動によるものをさす。電動式とは、 巻上げ、移動ともすべて電動によるものをさす。
 - 2. 標準据付工数には走行レールの据付けは含むが、ランウェイガーターの据付けは含まない。
 - 3. 据付けに伴う各部調整及び電動式天井クレーンの電気配線配管布設は、本標準据付工数に含む。

3-3 現場塗装費

現場塗装の材料は、補助材料費に含まれる。

現場塗装の労務は、据付工数に含まれる。

3-4 直接経費

(1)機械経費

据付けに係る機械経費は、表-4・38を標準として計上する。

なお、機種選定、所要数量、運転時間(日数)等については、据付条件並びに関連工事などを勘 案のうえ決定する。

表-4・38 標準機械器具

	機械器具名	標準規格	摘要
	ラフテレーンクレーン		屋外機器用(必要により計上)
機械	電気溶接機		基礎据付用
器	空気圧縮機	排出ガス対策型	はつり用
具費	発動発電機	排出ガス対策型	商用電源がない場合
	その他必要なもの		現場条件により計上する
	雑器具損料		機械器具費×2%

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

(2) 試運転調整費

ポンプ設備の電気設備を含めた総合負荷試運転調整費は、次式を標準とする。なお、職種は機械 設備据付工とする。

総合負荷試運転調整費(円)=総合負荷試運転調整工数(人/式)×機械設備据付工賃金(円/人)

1) 総合負荷試運転調整工数

総合負荷試運転調整工数 (人/式) = (-0.000015X²+0.0226X+4.26) × Km × Kc

X:同一機場内における最大ポンプ吐出量 (m³/min)

Km: ポンプ台数補正係数

Kc:ポンプ制御補正係数

- (注) 1. X はポンプ吐出量 (m³/min) であり、ポンプ吐出量 (m³/min) の標準値は、表-4・3 を適用する。
 - 2. 電気設備・運転操作設備とともに総合負荷試運転調整を行う場合に適用する。 なお、機械設備の機器単体の調整は機械設備据付工数に、電気設備の機器単体の調 整は、電気設備据付工数に含まれる。
 - 3. 総合負荷試運転調整工数には、法令等に基づく使用前自主検査及び官庁検査等は含まれていない(共通仮設費の技術管理費に含む)。
 - 4. 総合負荷試験運転調整工数には、ポンプ設備工事として施工した設備の負荷運転に関する調整工数であり、他工事や土木工事の調整工数は別途計上する。
- 2) ポンプ台数補正係数 (Km)

ポンプ台数補正係数 (Km) は、表 $-4 \cdot 39$ を標準とする。

表-4・39 ポンプ台数補正係数 (Km)

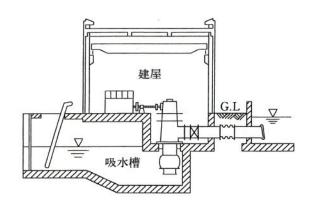
ポンプ台数	1台	2 台	3 台	4 台	5 台以上
補正係数	1.0	1.6	1.8	2.0	2. 2

- (注) 1. ポンプ台数が5台を超える場合は,1台当り[0.2]を5台の係数に加算する。
 - 2. ポンプ台数はポンプ吐出量区分にかかわらず、試運転の対象ポンプの台数とする。
- 3) ポンプ制御補正係数 (Kc)

ポンプ制御補正係数 (Kc) は、表 $-4 \cdot 40$ を標準とする。

表-4・40 ポンプ制御補正係数 (Kc)

ポンプ制御方式	台数制御弁制御	回転数制御
補正係数	1.0	1.3


(注) 制御方式の異なるポンプ設備を全体で試運転調整する場合は、補正係数の大きい制御方式で補正する。

基準の解説

1 適用範囲

標準ポンプの適用範囲外,特殊ポンプ(可動翼等),立軸渦巻ポンプ(斜流)及び水中ポンプの工場製作費は、見積り又は機器単体費として適正な価格を計上されたい。

標準歩掛の適用条件で、立軸軸流ポンプ(一床式)及び立軸斜流ポンプ(一床式)には、半二床式(減速機をポンプ直上に設置し、原動機はその横に専用架台上に設置される構造)を含む。なお、立軸斜流ポンプの半二床式については、下記の機場のレイアウトを参考とする。

2 直接製作費

- 2-1 材料費
 - (1) 主要部材費

ポンプの区分別の主要部材・副部材・部品の範囲は、参考図-1~10による。

3 直接工事費

- 3-1 据付材料費
 - (1) ポンプ設備据付材料費

増設工事や分割発注工事等の場合には、ポンプ設備据付材料費を次により機械設備据付材料費と 電気配管配線材料費を分割して算出してよい。

(2) 機械設備据付材料費

機械設備据付材料費を算出する場合は、次式による。

機械設備据付材料費=ポンプ設備据付材料費-電気配線配管材料費

- (3) 電気配線配管材料費
 - 1) 電気配線配管材料費を算出する場合は、次式による。

電気配線配管材料費(円)=電気配線配管据付労務費(円)×

電気配線配管材料費率(%)

電気配線配管据付労務費とは、据付対象設備の据付けに従事する機械設備据付工・普通作業員・ 電工の労務費をいい、別途計上される土木工事、電気工事費中の労務費は対象にしない。

原動機種別	ポンプ形式	電気配線配管材料費率
電 動 機	横軸渦巻ポンプ (両吸込・片吸込)	40
	横軸軸流・斜流ポンプ	26
	立軸軸流・斜流ポンプ (一床・二床式)	0.0
	立軸渦巻ポンプ (斜流)・水中ポンプ (固定・着脱)	23
ディーゼルエンジン	横軸軸流・斜流ポンプ・横軸渦巻ポンプ (両吸込・片吸込)	11
	立軸軸流・斜流ポンプ (一床・二床式)	7
ガスタービンエンジン	立軸軸流・斜流ポンプ (一床・二床式)	7

- (注) 1. 電気配線配管材料費率に含まれる電気配線材料は、次のとおりとする。
 - 2. 電気配線配管材料は、受配電盤からポンプ・原動機・減速機・バルブ・計測機器・ 監視制御等に結線される電気の配線材料(水位計配線含む),配線用配管材料,配線支 持材,配線ピット用材料(蓋含む)等である。
 - 3. 範囲は機場(敷地)内設備に使用する据付材料とする。
 - 4. ポンプ設備の受電電圧は、高圧受電を標準としているので、低圧受電の場合は電気 配線配管材料費率に、表-2の値を乗じる。

表-2 低圧受電の補正率

(%)

原動機種別	低圧受電の補正率		
電 動 機	50		
ディーゼルエンジン	40		
ガスタービンエンジン	48		

(4) 付帯設備据付材料費

付帯設備(自家発電設備・燃料貯油槽設備)の据付材料費については,表-3の付帯設備据付材料費率を適用する。

表-3 付帯設備据付材料費率(自家発電設備・燃料貯油槽設備)(%)

付帯設備種別	付帯設備据付材料費率
自家発電設備	15
燃料貯油槽設備	4

- (注) 1. 自家発電設備・燃料貯油槽設備の据付材料の範囲は、次のとおりとする。
 - 2. 水・油・燃料・空気用の小配管(排気管は除く),小配管用弁,小配管用ボルト・ナット・パッキン,排気管の断熱材料,小配管用材料(蓋含む),ステー材,アンカー材,配管貫通部の二次コンクリート,仕上モルタル,配線材料,配線用配管材料,配線支持材,配線用ピット用材料(蓋含む)等である。

3-2 据付工数

- (1) ポンプ設備据付工数 (Ymi)
 - 1) 増設工事や分割発注工事等の場合には、ポンプ設備標準据付工数を次により機械設備据付工数 と電気配管配線据付工数を分割して算出してよい。

2)機械設備据付工数

(イ)機械設備据付工数 (Yki) を算出する場合は, 次式による。

機械設備据付工数(Yki)=ポンプ設備標準据付工数(Ymi)ー電気配線配管据付工数(Yei)

(ロ)機械設備据付工数をポンプ設備の構成機器別割合で示すと、表-4のとおりである。

ポンプ設備を分割発注する場合は、機械設備据付工数の機器別割合の内訳を全体の主ポンプ 台数により按分して算出する。

ただし、吸込管、吐出し管については、主配管の(吸込管、吐出し管)の施工延長により按 分して算出する。

機器名ポンプ形式	原動機種別	主ポンプ	原動機及 び減速機	吸込管・ 吐出管	主バルブ	補機類	場内小配管
横軸軸流・斜流ポンプ	電 動 機	33. 1	13.0	25. 2	9. 2	6. 1	13. 4
(無理性)ル・赤孔ルハンフ	エンジン	26. 7	14. 5	21. 9	5. 2	8.8	22. 9
立軸軸流・斜流ポンプ	電 動 機	51.8	13.6	10. 2	12.8	4. 1	7. 5
(一床式)	エンジン	28. 1	23. 9	13. 4	6.8	5. 0	22. 8
立軸軸流・斜流ポンプ	電 動 機	49. 9	17. 0	7. 0	16. 4	2.0	7. 7
(二床式)	エンジン	28. 0	24. 0	8.6	6.6	3. 4	29. 4
横軸渦巻ポンプ (両吸込・片吸込)	電 動 機	34. 9	5. 9	27.3	10.0	6. 7	15. 2
立軸渦巻ポンプ (斜流)	電 動 機	42. 2	15. 5	23. 3	17. 5	0.7	0.8
水中ポンプ(固定・着脱)	電動機	52. 3	_	34. 7	13.0	_	_

表-4 機械標準据付工数の機器別割合

(%)

3) 電気配線配管据付工数

(イ) 電気配線配管据付工数 (Yei) は、表-5により算出する。

ポンプ形式 ポンプ実叶出量範囲 (m³/min) 電気配線配管据付工数算定式 備考 横軸軸流・斜流ポンプ 12 超~600以下 $y = -0.0006X^2 + 0.662X + 30.25$ 立軸軸流・斜流ポンプ 12 超~325以下 $y = -0.0013X^2 + 0.853X + 25.6$ (一床式) 立軸軸流・斜流ポンプ 12 超~850以下 $y=-0.0003X^2+0.552X+35.07$ (一床式) 0.1 超~ 18 以下 $y = -0.1575X^2 + 4.668X + 25.37$ 横軸渦巻ポンプ (両吸込・片吸込) 18 超~200以下 $y=-0.0018X^2+0.94X+51.53$ 3 超~ 18以下 $y = -0.0246X^2 + 1.149X + 23.74$ 立軸渦巻ポンプ(斜流) 18 超~200以下 $y=-0.0008X^2+0.389X+31.57$ 引込設備は低圧 受電の工数 0.1超~ 18以下 $y = -0.0351X^2 + 1.032X + 3.34$ 水中ポンプ (固定・着脱) $y = -0.0009X^2 + 0.255X + 8.03$ 18 超~ 90以下

表-5 電気配線配管据付工数 (Yei)

- (注) 1. 上表中の y は電気配線配管据付工数, X はポンプ吐出量 (m³/min) であり、ポンプ 吐出量 (m³/min) の標準値は、表-4・3 を適用する。
 - 2. 据付工数は、ポンプ設備据付工数で構成し、職種別構成割合は、「標準歩掛」 表 4・29 を標準とする。

⁽注) 軸の潤滑・封水及び原動機冷却が無給水方式の場合は、上表は適用出来ないので別途検 討する。

(ロ)電気配線配管据付工数における電気配線配管工事と機側操作盤据付の構成率は,表-6 とする。

表-6 電気配線配管工事と機側操作盤据付の構成率 (%)

電気配線配管	機側操作盤
80	20

(ハ) 分割発注工事の場合は、電気配線配管据付工数を次により積算する。

当初 (一期) 工事では、当初発注のポンプ台数によりポンプ据付台数による補正係数 (表-4・34) を用いて算出し、増設 (二期) 工事では、機場全体のポンプ台数により台数補正を行った後、当初 (一期) 工事分を差し引いた値を用いて算出する。

- 4) 給水方式による補正係数 (Ks) 節水型軸封装置については、無給水方式を適用する。
- (2) 付帯設備(受変電設備)標準据付工数
 - 1) 付帯設備(受変電設備)標準据付工数(Yj)における電気機器別据付構成率は,表-7による。

表-7 付帯設備(受変電設備)標準据付工数の電気機器別据付構成率(%)

原動機区分	引込設備	受配電設備
電 動 機	10	90
ディーゼルエンジン ガスタービンエンジン	15	85

- 2) 分割発注工事の場合は、付帯設備(受変電設備)標準据付工数算定に用いる原動機出力(kW)は、全体の出力により算出し、対象となる盤等の施工(据付け)質量により按分して算出する。
- (3) 付帯設備(自家発電設備)及び付帯設備(燃料貯油槽設備)据付工数
 - 1) 自家発電設備及び燃料貯油槽設備の据付工数は積上げによることを原則とするが、これにより 難い場合は、表-8により算出して良い。なお、本工数はポンプ設備以外には適用出来ない。

表-8 自家発電設備及び燃料貯油槽設備据付工数 (人/式)

設備区分	工数算定式	備考
自家発電設備	据付工数(人)=0.08×KVA+6.09	KVA: 発電機出力
燃料貯油槽設備	据付工数(人)=0.25×KL+8.5	KL: 貯油槽容量

- (注) 1. 自家発電設備据付の範囲は、発電機本体、消音器、発電機盤、燃料小出槽までの配管、発電機に係る電気配線配管までとする。なお、自家発電設備が複数ある場合は、合計出力で算出する。
 - 2. 自家発電設備はディーゼルエンジン駆動であり、ガスタービンエンジン駆動の場合 には適用出来ない。
 - 3. 燃料貯油槽設備据付の範囲は、燃料貯油槽本体及び燃料輸送ポンプ (機側操作盤含む)、燃料貯油槽本体から燃料輸送ポンプ出口フランジまでの配管・バルブ・油面計及 び燃料貯油槽設備に係る電気配線配管、乾燥砂充填までとする。なお、燃料貯油槽設備が複数ある場合は、合計容量で算出する。また、乾燥砂は別途計上すること。
 - 4. 本燃料貯油槽設備据付工数は、屋外の地下に設置する場合の据付工数であり、屋内の地下に設置する場合には適用出来ない。
 - 5. 据付労務の職種構成は、「標準歩掛」表-4・29 付帯設備(天井クレーン)据付工数 に準ずる。

3-3 直接経費

(1) 機械経費

- 1) 据付けに要する機械器具の計上日数は、施工計画による工程表から算出することを原則とするが、これにより難い場合は、表-9を参考に算出しても良い。
- 2) 形式・寸法の異なるポンプを複数台据付する場合は、主となる(最も吐出量の大きい)ポンプにより算定し、標準据付実日数算出の台数補正を適用する。

表-9 据付けに要する機械器具の計上日数 (日/台)

ポンプ形式	形式別損料計上日数算出式
横軸軸流・斜流ポンプ	$Y1 = -0.00008X^2 + 0.134X + 13.37$
立軸軸流・斜流ポンプ(一床式)	$Y1 = -0.00007X^2 + 0.1256X + 12.5$
立軸軸流・斜流ポンプ (二床式)	$Y1 = -0.00009X^2 + 0.1559X + 15.52$
横軸渦巻ポンプ (両吸込・片吸込)	$Y1 = -0.00213X^2 + 0.7562X + 7.97$
立軸渦巻ポンプ (斜流)	$Y1 = -0.00127X^2 + 0.5467X + 12.47$
水中ポンプ (固定・着脱)	$Y1 = -0.00212X^2 + 0.3309X + 1.72$

(注) X:同一機場内における形式別最大ポンプ吐出量 (m³/min)

Y1:形式別損料計上日数(日)

(2) 機械器具損料計上日数 (Y) は次式により算出する。なお、ポンプ台数補正は、表-10 による。 Y= Σ (Y1×kd)

表-10 ポンプ台数補正係数 (kd)

ポンプ台数	1台	2台	3 台	4台
補正係数	1.00	1.40	1.70	2.00

(注) kd: 同一機場内における主ポンプ台数

(3) ポンプ据付機械器具損料の対象機器は施工計画により決定することを原則とするが、これにより難い場合は、表-11を参考にしても良い。

表-11 ポンプ据付機械器具損料の対象機器

機械器具名	標準規格	計上日数	摘 要
ラフテレーンクレーン			現場条件により計上する
電気溶接機	ディーゼルエンジン駆動・直流アーク式・排 出ガス対策型(第2次 基準値) 200A	Y×1.00 目	基礎据付用
空気圧縮機	2.2m³ 可搬式	Y×0.10 ∃	はつり用
発動発電機	45kVA ディーゼルエ ンジン付	Y×0.25 ∃	商用電源がない場合
その他必要なもの			現場条件により計上する
雑器具損料			機械器具費×2%

- (注) 雑器具損料とはジャッキ,チェーンブロック類,溶接用雑器具,据付用雑器具等の損料である。
- (4) ポンプ設備の屋外部材を据付ける場合のラフテレーンクレーンは、部材重量及び作業半径等によりクレーン規格を決定するものとするが、計上日数は下表を用いても良い。

なお、機場外回りのポンプ部材とは、横軸軸流・斜流ポンプの場合は吐出し管の屋外部及びフラップ弁とし、横軸・立軸渦巻ポンプの場合は、吸水管、屋外可とう管及び集合管とする。また、水中ポンプはポンプ本体、吐出し管等ポンプ設備すべての部材をいう。

表-12 機場外回りのポンプ部材据付クレーン (ラフテレーンクレーン) の計上日数 (日)

ポンプ形式	計上単位	ラフテレーンクレーン計上日数算出式		
横軸軸流・斜流ポンプ				
立軸軸流・斜流ポンプ (一床・二床式)	1台当り	$Y2 = 0.0045 \times X + 1.9$		
横軸・立軸渦巻ポンプ	1機場当り	$Y2 = 0.0074 \times X + 1.2$		
水中ポンプ	1台当り	$Y2 = 0.0244 \times X + 0.7$		

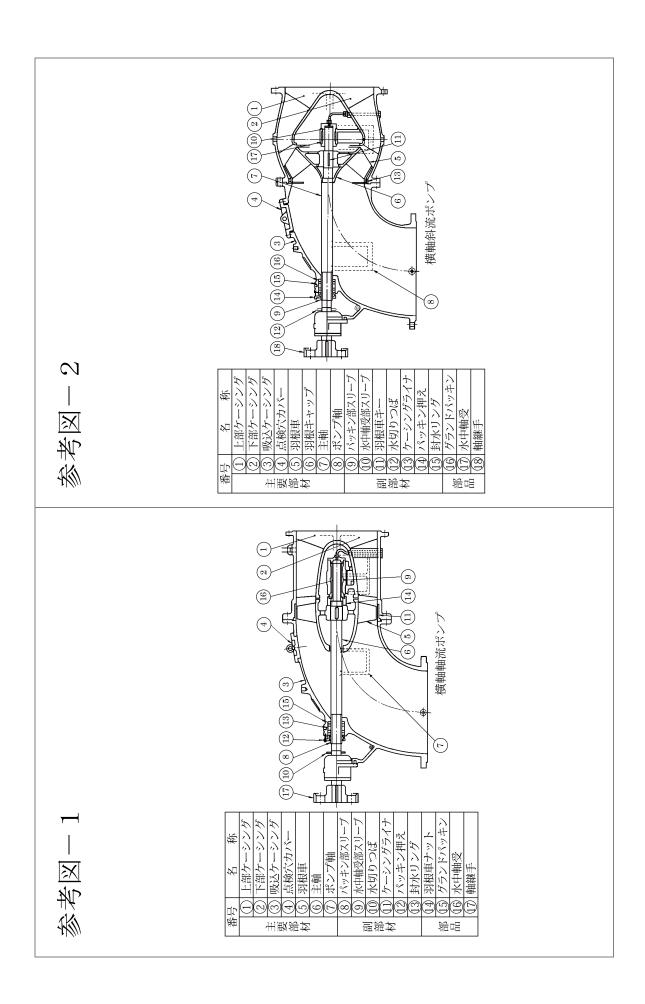
(注) X:同一機場内における最大ポンプ吐出量 (m³/min)

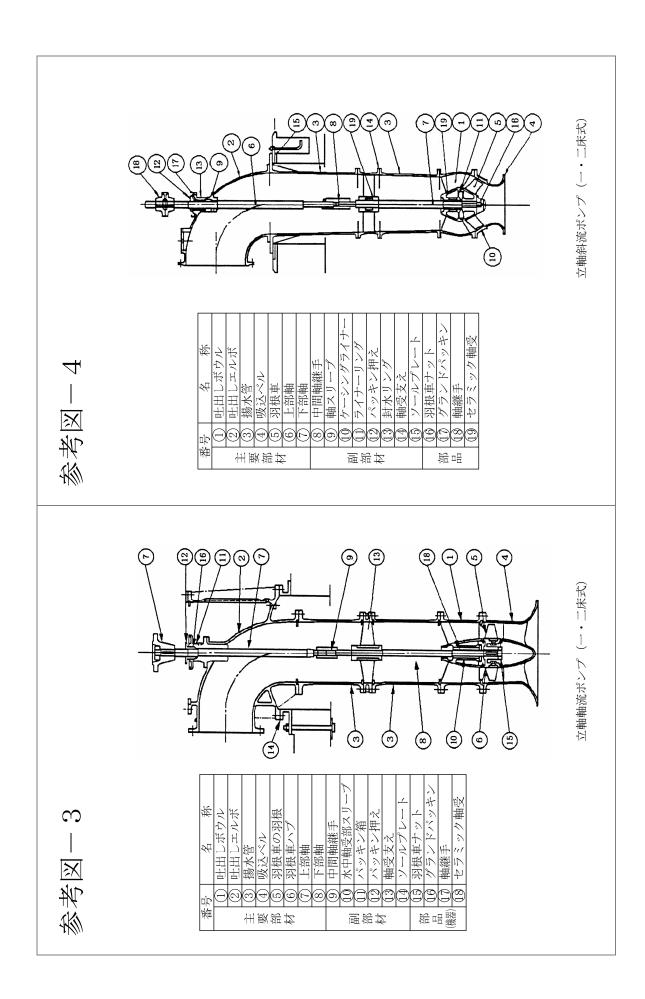
Y2: ラフテレーンクレーン計上日数(日)

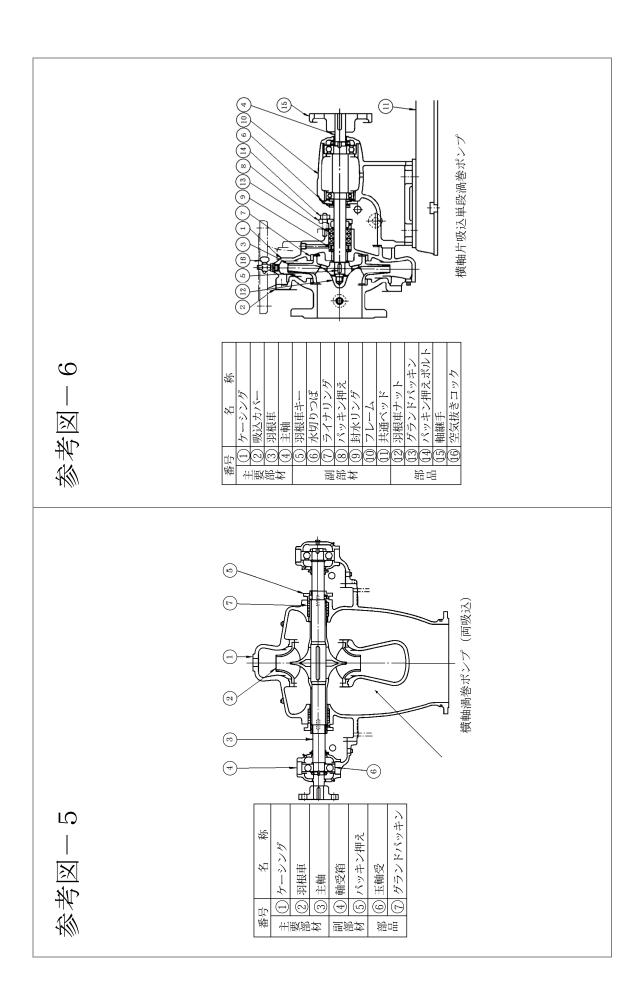
(5) ラフテレーンクレーン計上日数 (Y) は、次式により算出する。なお、ポンプ台数補正は、表-13 による。

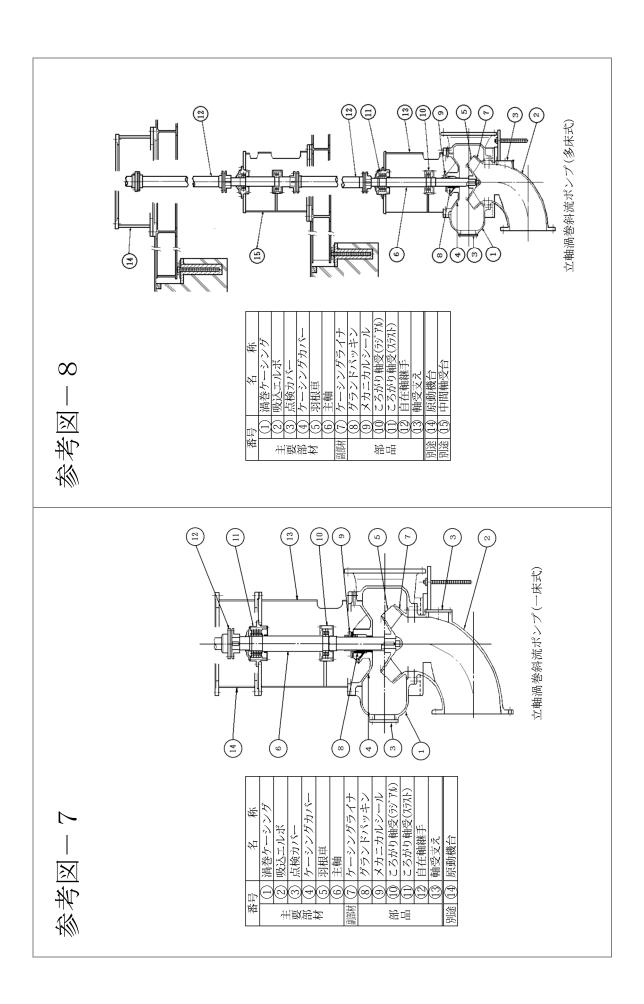
 $Y = Y2 \times kd$

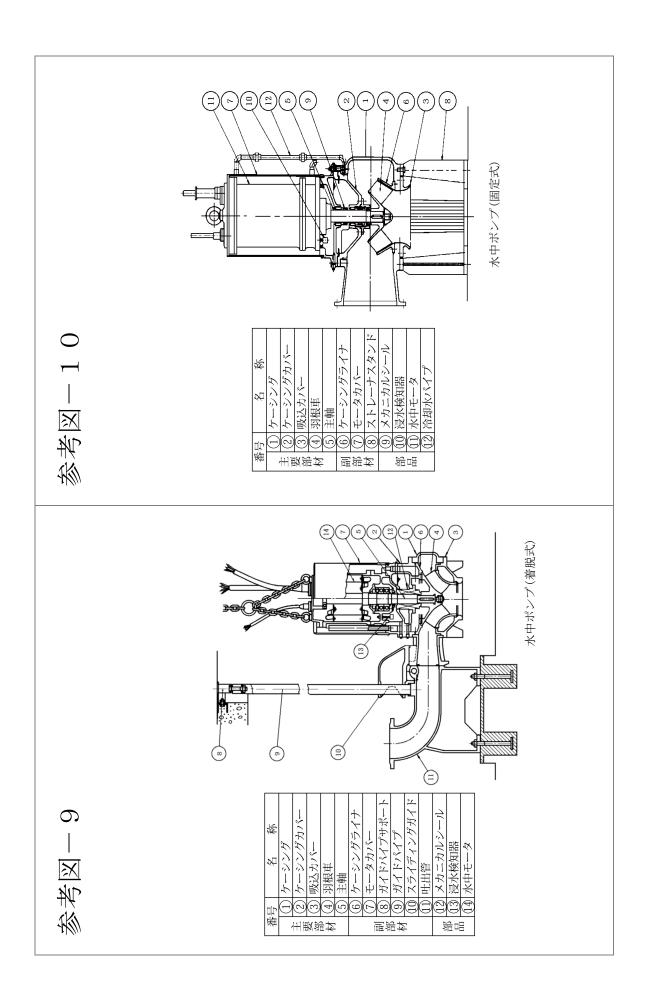
表-13 ポンプ台数補正係数 (kd)


ポンプ台数	1台	2台	3 台	4台
補正係数	1.00	1.40	1.70	2.00


(6) 試運転調整費


同一機場内における最大ポンプ吐出量とは、総合負荷試運転調整の対象となるポンプの中で最大 吐出量をいい、既設ポンプ等で総合負荷試運転調整が完了しているものは対象としない。


4 その他


ポンプ設備の据付けに要する日数は、施工計画による工程表から算出することを原則とする。

② コラム形水中ポンプ設備

1 適用範囲

この基準は、コラムパイプに水中モータポンプを取付けて排水を行うコラム形水中ポンプ設備の製作・ 据付けに適用する。

1-1 適用条件

この基準が適用出来るポンプ形式,ポンプロ径,計画吐出量及び揚程範囲は,表 $-4\cdot41$ を標準とする。

表-4・41 ポンプ形式、ポンプロ径、計画吐出量及び揚程範囲

ポンプ形式	ポンプロ径	計画吐出量	揚程範囲
コラム形着脱式 立軸斜流水中モ ータポンプ	700mm	$1~{ m m}^3/{ m s}$	6∼9m

1-2 区分及び構成

コラム形水中ポンプ設備の区分及び構成は、表-4・42のとおりとする。

表-4・42 区分及び構成

区分	構成
ポンプユニット	ポンプ本体、コラムパイプ
配 管	吐出弁,吐出管,継手
電源・操作設備	発電装置(原動機, 交流発電機, 内蔵燃料槽, 始動用蓄電池, 充電器, 発電機盤, 操作盤), 接地端子箱, 接続盤, 保護装置, ケーブル, ケーブルリール
付 属 設 備	補助燃料タンク、照明設備、水位計

(注)発電装置から独立して設置する操作盤は、電源・操作設備に含むものとする。

2 直接製作費

2-1 直接材料費

エキストラは、原則として計上しない。ただし、仕様書に明記した場合は必要に応じ計上するものとする。

2-2 機器単体費

機器単体費として計上する品目は、表-4・43のとおりとする。

表-4・43 機器単体品目

機器単体品目 ポンプ本体, コラムパイプ, 弁, 継手, 発電装置, 接地端子箱, 接続盤, 保護装置, ケーブル, ケーブルリール, 水位計

(注) 発電装置から独立して設置する操作盤は、機器単体費で計上するものとする。

2-3 製作工数

(1) 吐出管

吐出管の製作工数は、「第 18 章 鋼製付属設備」によるものとする。 吐出管については 1 系統毎に 1 本(基)として、区分 D により積算するものとする。

(2) 付属設備

付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

2-4 工場塗装費

吐出管及び付属設備の塗装費は、「第19章 塗装」によるものとする。

2-5 間接製作費

(1) 間接労務費

吐出管及び付属設備の製作に係る間接労務費は、「第1章 一般共通」によるものとし、間接労務 費率は鋼製付属設備に準ずるものとする。

(2) 工場管理費

吐出管及び付属設備の製作に係る工場管理費は、「第1章 一般共通」によるものとし、工場管理 費率は鋼製付属設備に準ずるものとする。

3 直接工事費

3-1 材料費

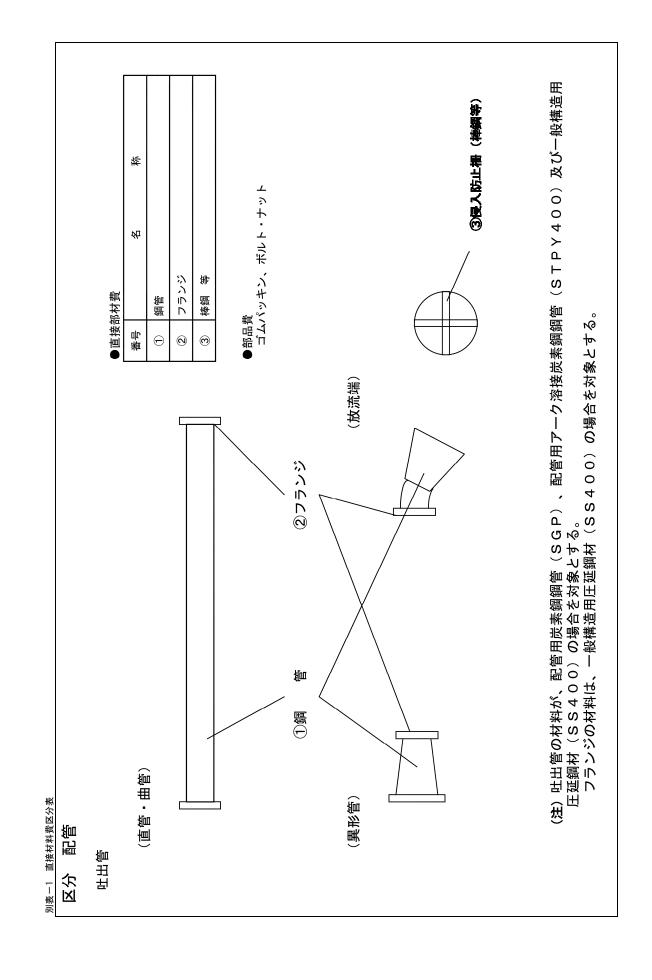
据付けに使用する電気配線、配管等の材料及び部品費は積上げ計上するものとする。

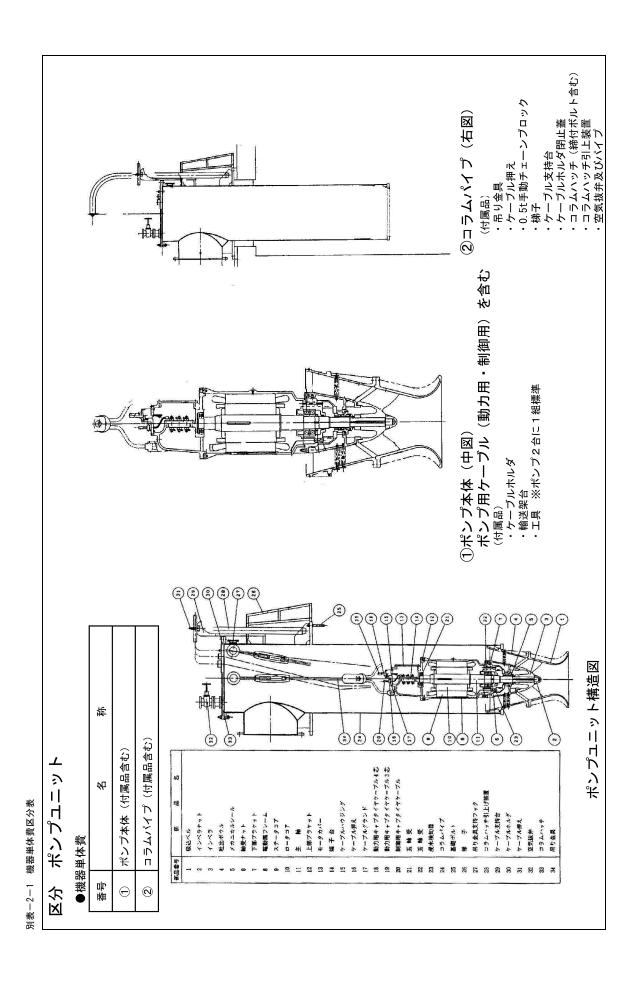
3-2 据付工数

据付・試運転調査に要する必要工数を積上げるものとする。

3-3 機械経費

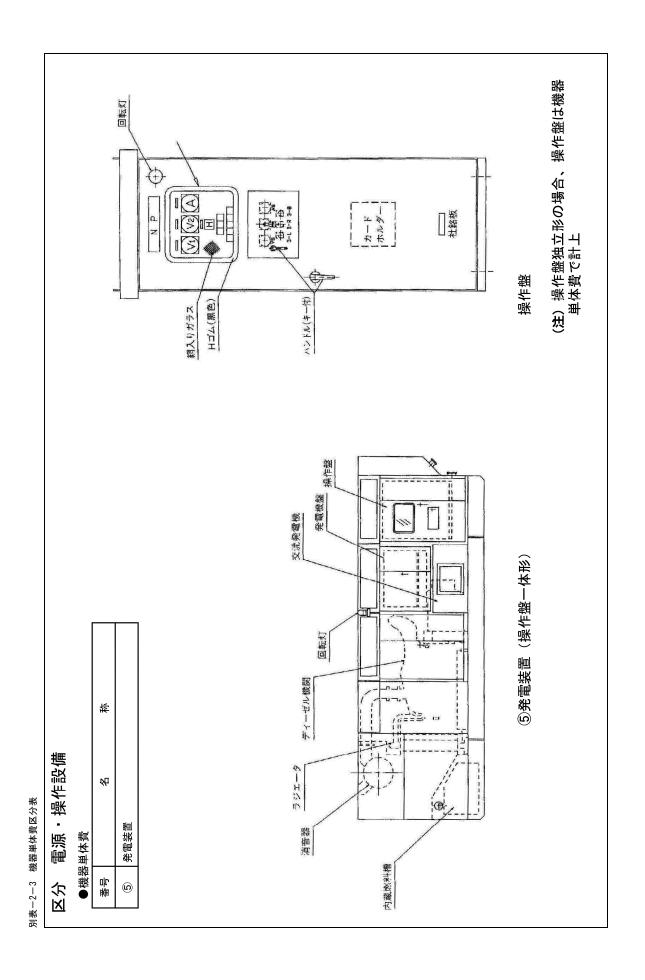
据付けに係る機械経費は、必要に応じてラフテレーンクレーン、溶接機等について積上げ計上するものとする。


4 間接工事費


- 4-1 共通仮設費 共通仮設費は、「第1章 一般共通 (揚排水ポンプ設備)」に準ずるものとする。
- 4-2 現場管理費現場管理費は、「第1章 一般共通(揚排水ポンプ設備)」に準ずるものとする。
- 4-3 据付間接費 据付間接費は、「第1章 一般共通(揚排水ポンプ設備)」に準ずるものとする。

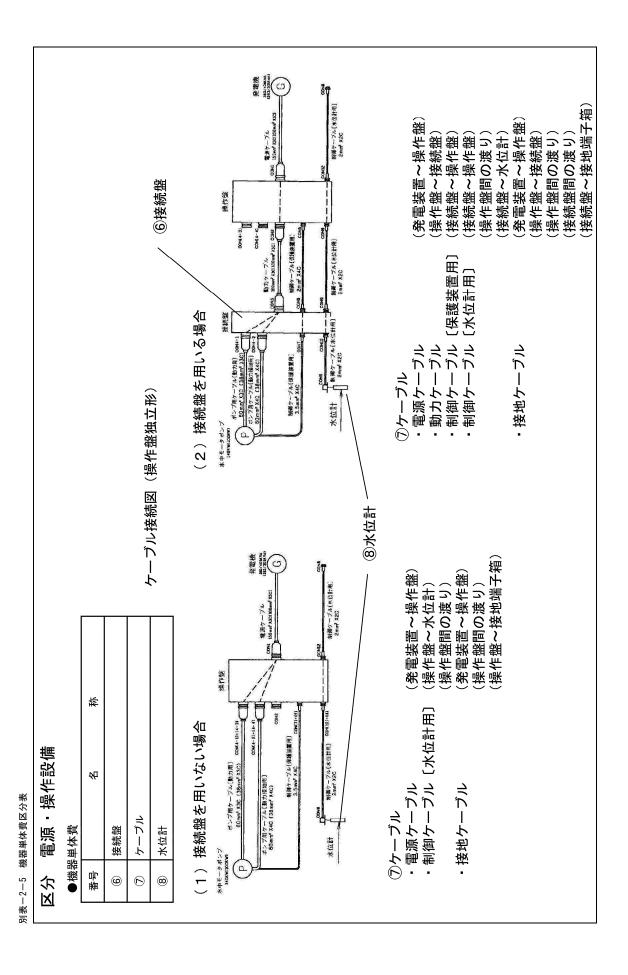
5 設計技術費

設計技術費は、「第1章 一般共通(揚排水ポンプ設備)」に準ずるものとする。


基準の解説

IX - 4 - 38

JWH // ④可撓伸縮継手 ・ボルト・ナットは部品費で計上 天端配管 洗幅防止工 路面処理 堤防 配管断面図 (参考) 吐出鳕 計画断面 157 4可撓伸縮継手 3吐出弁 コンクリート支持合 ③吐出弁 ・ボルト・ナットは部品費で計上 苓 継手(可撓伸縮継手) 佑 別表-2-2 機器単体費区分表 弁 (吐出弁) 配管 ●機器単体費 番号 区公 <u></u> 4



IX - 4 - 40

CONE 製薬ケーブル(米並計用) Zmm* X2C 接続盤~接地端子箱) (操作盤~接続盤) (操作盤~接続盤) 接続盤~水位計) 操作盤間の渡り) 接続盤間の渡り) 操作盤~接続盤) 操作盤~接続盤) 6接続盤 操作器 #377 — 7.16 CON4-4 制御ケーブル(保護装置用) 2mm x4C con 新畑ケーブル(保護装置用) 2mri X4C 配面ケーフル(木山計用) 2mm X2C ・制御ケーブル (保護装置用) ・制御ケーブル (水位計用) はフラテーブル(地)用 CON+1 50mm * X-12 (38mm* X-13)] 50mm * X-12 (48mps 4 m) CON+2 を持つていていていている。 41、フラル(中央を用) CON+2 を持つていていていている。 41、フラル(中央を用) CON+2 を持つていていていている。 42、Done * X-12 (48mps m) CON (48mp 存続鍵 A (2)接続盤を用いる場合 監御ケーブル(本位計用) 2mm* X2C ボンプ用ケーフル(動力接地用) cox4-2 60mm* X4C (38mm* X4C) / -----ボンブ用ケーフル(動力用) cox+・) BOmm* X3C (38mm* X3C) 新御ケーフル(保護装置用) 3.5mm* %の 接地ケーブル 動力ケーブル プケーブル 米位罪 木中モータボンブ MJKW(1BOKN) ケーブル接続図(操作盤ー体形) 8水位計 (水位計~操作盤) (発電装置間の渡り) (操作盤~接地端子箱) 杂智法 操作權 7 制御ケーフル (保護装置用) L5mmf X4C 精剤ホーブル (保護装置用) 3.5m㎡ X4C 苓 ・制御ケーブル[水位計用] **割御ケーブル(水位計用)** 2mm X2C (1)接続盤を用いない場合 電源・操作設備 佑 スキモータボンブ 140kw(100kw) ボン用ケーブル(別5月) 80mm X3C (18mm X3C) ・接地ケーブル **⑦ケーブル** ケーブル 水位計 機器単体費 接続盤 大作計 番児 区分 9 **∞** (C)

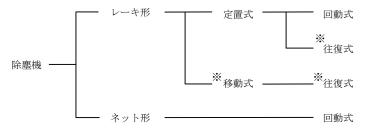
IX - 4 - 41

別表-2-4 機器単体費区分表

③ 除塵設備

1 適用範囲

この基準は、堰、揚排水機場、排水路、用水路に設置する除塵設置の製作、据付けに適用する。ただし、 ダム除塵設備には適用出来ない。


1-1 区分及び構成

(1) 除塵設備の区分及び構成は、表 $-4\cdot44$ のとおりとする。

表-4・44 区分及び構成

	区 分	構成
	除塵設備	除塵機本体,搬送設備,貯留設備,操作制御設備
Ī	付属設備	操作台,管理橋,塵芥搬出用コンテナ

- (注) 1. 除塵機本体とは、塵芥等を水路等から掻き揚げるための設備であり、掻き揚げ部及び掻き揚げ部と一体的な設備(本体架台、原動機架台、操作・管理用足場等)を含むものとする。なお、本基準で適用出来る範囲は、レーキ形定置回動式除塵機及びネット形除塵機である。
 - 2. 搬送設備とは、塵芥等を搬送する設備であり、水平用及び傾斜用のベルトコンベヤ 並びにチェーンフライトコンベヤのことをいう。
 - 3. 貯留設備とは、塵芥を一時貯留するための設備であり、電動式排出ゲートのホッパのことをいう。
 - 4. 除塵設備にリーン二相鋼 (SUS821L1, SUS323L) 又はスーパー二相鋼 (SUS327L1) 等の新材料を使用した設備には適用出来ないので、別途積上げるものとする。
 - 5. 操作台,管理橋とは,除塵機本体から独立した鋼製構造物のことをいう。
 - 6. 塵芥搬出用コンテナとは、塵芥を搬出するためのコンテナのことをいう。
- (2)表-4・44区分における除塵機本体の形式を大きく次のように分類する。

※印は本基準の適用外である。

1-2 適用条件

適用条件は,表-4・45を標準とする。

表-4・45 除塵設備・付属設備標準製作・据付工数の適用形式

区分	適	用形式	備考
	形 式	適用出来る形式	VIII 5
レーキ形除塵機	定置回動式	背面降下前面掻揚前面降下前面掻揚	掻き揚げ部以外(本体架台,原動機架台,操作・管理用足場等)については標準工数に含まれないため,鋼製付属設備を適用する
ネット形除塵機	セパレートネット	デュアルフロー, ストレートフロー	本体に付帯する手摺、階段等は標
	エンドレスネット	デュアルフロー,ストレートフロー	準工数に含んでいる
コンベヤ	水平ベルト	3点キャリア	本体に付帯する手摺、階段等は標
	傾斜ベルト	2又は3点キャリア	準工数に含んでいる。なお,偏角 ベルト・偏角フライトには適用出
	チェーンフライト	フライト	来ない
ホッパ	電動ガットゲート	電動シリンダ	本体に付帯する手摺, 階段等は標準工数に含んでいる。地上高の適用範囲はゲート底部高 2.5~3m, 架台床板高さ4~5m とする
付属設備	操作台・管理橋	操作台・管理橋(手摺,階段含む)	
	塵芥コンテナ	可搬式コンテナ	

- (1) 本基準の適用外の形式を製作・据付する場合は、別途見積り等の内容を十分検討し、積算するものとする。
- (2) レーキ形往復式のスクリーンを製作・据付する場合は、「第 18 章 鋼製付属設備」により、 積算することが出来る。
- (3) 除塵機付属設備における製作・据付適用区分は、表-4・46によるものとする。

表-4・46 鋼製付属設備の適用区分及び適用内容

区 分	適用区分	適 用 内 容
除塵機本体 (本体架台,原動機架台,操作足場等)	A	除塵機の掻き揚げ部と一体的に構成され,除塵機本体として 設置される鋼製の架台,操作足場等
操作台・管理橋	A	設備の操作管理のために設置される小規模な鋼製橋梁及び歩 廊
手摺	С	鋼管・平鋼・棒鋼等を主材とした構造で溶接及び加工の程度 が比較的高いもの
階段	В	平鋼・縞鋼板等を主材とした構造で溶接及び加工の程度が比 較的高いもの
塵芥コンテナ	D	鋼管・平鋼・棒鋼等を主材とした構造で比較的単純な構造の もの

- (注) 1. 除塵機本体(本体架台、原動機架台、操作足場等)は、除塵設備の「間接労務費率、 工場管理費率」とし、独立して設置される付属設備(操作台・管理橋・塵芥コンテナ 等)は、鋼製付属設備の間接労務費率及び工場管理費率を適用する。
 - 2. 補助材料費率は,鋼製付属設備の率を適用する。

2 直接製作費

2-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=主要部材費+副部材費+部品費+補助材料費

- (2) 主要部材費
 - 1)主要部材費の積算は、次式による。

主要部材費= Σ (各主要部材所要量×各主要部材単価)

なお、各区分毎の主要材料の範囲は、表-4・47のとおりとする。

- 2) 主要部材の主要量の算定及び主要部材単価は、「第1章 一般共通」直接材料費に準ずる。
- 3) 法エキストラは厚みエキストラ,幅エキストラとし、必要に応じて計上するものとする。
- (3) 副部材費

副部材費の積算は次式による。

副部材費=主要部材費×副部材費率(%)

各区分毎の副部材の範囲は、表-4・47のとおりとする。

なお、副部材費率は、表-4・48によるものとする。

表-4・47 主要部材・副部材の範囲

女 + * + / 工女마까 * 町마까 ♡ 判 四					
		主要	・副部材の範囲		
区	分	主要部材(所要量を積上げる部 材)	副部材費率(副部材費率に含まれる部材)		
レーキ形 定置回動式 除塵機	スクリーン 上部ガイド 下部ガイド レーキ エプロン 駆動装置 ※ (注) 1	スクリーンバー,スクリーン受 桁,補助スクリーンバー,通しボルト,レーキガイド,ガイド、レール (チェーンスライド部),ガイド側板,レーキ爪,レーキ桁,同カバー,エプロン (鋼板),駆動軸	各部取付材・固定材, エンドプレート, リブ, ディスタンスピース, テークアッ プ部 (ブラケット, 取付材, 軌条, ガイ ドレール), 接合板, エプロン座, チェー ンガイド, スプロケットカバー, 継材, ライナー, エプロン受桁, ブッシュ, 駆 動部 (モータ台, カバー, スピンドル, 補強材) 等主要部材以外の部材		
ネット形 除塵機 (セパレート) (エンドレス)	ハウジングフレーム ハウジングカバー ガイドフレーム 下部ガイド 駆動装置 スクリーンネット 洗浄・送水装置 トラフ 水切スクリーン	主桁、脚、側板(鋼板)、斜材、 トラフ(鋼板、主要枠材)、架台、 モータ台(鋼板)、床板、手摺、 タラップ、洗浄装置配管材、ハ ウジング・フレームカバー、ガ イドフレーム、チェーンガイド、 整流板、駆動軸、スクリーンフ レーム、水切スクリーン、水切 スクリーン受材	リブ、補強材、取付材、テークアップ部 (フレーム、ガイド、カバー)、吊りフック・金具、連結材、扉枠、アンカベース、ゴム押え板、エンドプレート、カラー、防水板、ブッシュ、ストッパー、テンションロッド・ボルト、ベヤリングカバー・受、ブラケット、防塵板、カバー取手、駆動装置ベース・カバー、チェーンカバー、スクリーン押え板等主要部材以外の部材		
コンベヤ	フレーム スカート (シュート) 駆動装置 点検架台	フレーム, 脚, 支柱, リターン カバー, (安全カバー) (鋼板), トラフ, スカート (シュート) (鋼板), プーリ, 軸, フライト, 架台部 (床板, 主桁, 脚, 支柱, 手摺, 階段)	リブ,ベースプレート,取付材,ブラケット,ストッパー,継手材,テークアップ部(レール),テンション枠受座,リターンカバー(鋼板以外),ロープガイド,スカートゴム押え,点検蓋・取手,駆動部(ボス,カラー,ローラエンド,プーリエンド,スクレパ,テンションボルト,同カバー,モータカバー,チェーンカバー,モータ台),ライナー等主要部材以外の部材		
ホッパ	ホッパ 手摺・階段	支柱、横桁、補強材(ホッパ・ ゲート以外)、斜材、ホッパ本 体、ベースプレート、トッププ レート、床板(鋼板)、手摺、 階段、ホッパゲート、水滴防止 装置(主配管)、ホッパカバー、 屋根	ボス,ホッパ・ゲート補強材,取付材,シリンダカバー,ピン,ブッシュ,リブ,ライナー,接合板,床板(鋼板以外),ターンバックル,発散防止カバー,ストッパー等主要部材以外の部材		

- (注) 1. レーキ形定置回動式除塵機本体のうち、本体架台、原動機架台、操作・管理用足場等は、「第18章 鋼製付属設備」の直接部材費を適用する。
 - 2. 除塵機本体から独立した操作台・管理橋 (手摺, 階段含む), 塵芥用コンテナ等の鋼

製付属設備は、「第18章 鋼製付属設備」の直接部材費を適用する。

表-4・48 副部材費率

(%)

区 分	形式	副部材費率
レーキ形除塵機	定置回動式	24. 0
ネット形除塵機	セパレートネット	29. 0
イツト形际壁機	エンドレスネット	29.0
	水平ベルト	
コンベヤ	傾斜ベルト	22. 0
	チェーンフライト	
ホッパ	電動カットゲート	22. 0

(4) 部品費

部品費の積算は、次式による。

部品費=主要部材費×部品費率(%)

部品費率に含まれる部品の品目は、表 $-4 \cdot 50$ のとおりとする。 また、部品費率は、表 $-4 \cdot 49$ による。

表-4・49 部品費率

(%)

区 分	形 式	部品費率
レーキ形除塵機	定置回動式	16.0
ネット形除塵機	セパレートネット	23. 0
イツト形际壁機	エンドレスネット	23.0
	水平ベルト	
コンベヤ	傾斜ベルト	16.0
	チェーンフライト	
ホッパ	電動カットゲート	16.0

- (注) 1. レーキ形定置回動式除塵機本体のうち、本体架台、原動機架台、操作・管理用足場等は、「第18章 鋼製付属設備」の部品費を適用する。
 - 2. 除塵機本体から独立した操作台・管理橋 (手摺, 階段含む), 塵芥用コンテナ等の鋼製付属設備は, 「第 18 章 鋼製付属設備」の部品費を適用する。

表-4・50 部品の品目

ボルトナット, リミットスイッチ, キー, 点検窓, 取手, 配管材のパッキン, ガスケット, ベヤリング, グリスニップル, ホース類, ピロー形ユニット, スクレパゴム, 引綱スイッチ, 引綱ロープ, ワイヤクリップ等

(5) 補助材料費

補助材料費の積算は, 次式による。

補助材料費=(主要部材費+副部材費)×補助材料費率(%)

なお、補助材料費率は、表-4・51によるものとする。

表-4.51 補助材料費率 (%)

区 分	補助材料費率
レーキ形除塵機 ネット形除塵機 コンベヤ ホッパ	9. 0

- (注) 1. 補助材料費とは、製作(製造)の過程で消費される溶接剤、酸素、アセチレンガス 等の費用である。
 - 2. レーキ形定置回動式除塵機本体のうち、本体架台、原動機架台、操作・管理用足場等は、「第 18 章 鋼製付属設備」の補助材料費を適用する。
 - 3. 除塵機本体から独立した操作台・管理橋 (手摺, 階段含む), 塵芥用コンテナ等の鋼製付属設備は, 「第 18 章 鋼製付属設備」の補助材料費を適用する。

2-2 機器単体費

機器単体費として計上する品目は、表-4・52のとおりとする。

表-4・52 機器単体品目

電動機, ブレーキ, 減速機, エンジン, 巻上機, ポンプ, 受配電盤, 操作盤, 給油ユニット, スクリーンネット, 洗浄ポンプ, ストレーナ, 仕切弁, 軸継手, 電動シリンダ, 各部チェーン・ホイル, ワイヤーロープ, ロードセル, スプロケット, テークアップユニット, ゴム (防塵・スカート), 水中ポンプ, スプレーノズル, コンベヤローラ (キャリア, リターン) コンベヤゴムベルト, プーリゴムライニング, ヘッドクリーナ, ベルト片寄スイッチ, フランジユニット, 弁及び配管継手材等

2-3 製作工数

製作工数は, 次式による。

$Y = y \times Km \times Ks \times Kn$

Y:製作区分毎1基当りの製作工数(人/基)

y : 製作区分毎1基当りの標準製作工数(人/基)

Km: 使用材料による補正係数

Ks:構造による補正係数

Kn:製作数による補正係数

(1)標準工数

除塵設備の製作工数は、表-4・53を標準とする。

表-4・53 標準製作工数

区分	形式	工数算出式	v の祭田	X 要素=A×B		
区ガ	形式	工数算出式 Хの範囲		A	В	
レーキ形 除塵機	定置回動式	y = 9.6X + 74.8	5~40	スクリーン有効幅(m)	スクリーン実長 (斜長) (m)	
ネット形	セパレートネット	y=8.02X+68	3 ∼ 25	ネットチェーン中心間長	回転軸芯長(m)	
除塵機	エンドレスネット	y = 13.94X + 32	2~10	(m)		
	水平ベルト	y=11.21X 0.584	4~25	ベルト幅 (m)		
コンベヤ	傾斜ベルト	y=11.57X ^{0.768}	4~15	* 、 / レ ト 笛 (III)	機長(軸心間長)(m)	
	チェーンフライト	y=6.62X 1.208	3~10	トラフ幅 (m)		
ホッパ	電動カットゲート	y=42.49X ^{0.478}	2~10	貯留容量 (m³)	_	

- (注) 1. y は標準製作工数 (人/基、台)、X は「X 要素= $A \times B$ 」欄のとおりである。
 - 2. 製作工数に含む内容は、次のとおりである。

(1) 除塵機 : レーキ形においては、バースクリーン、上下部ガイド、レーキ、

エプロン, 駆動装置の製作

:ネット形においてはハウジング・フレーム,同カバー,ガイドフレーム, 駆動装置,スクリーンネット,洗浄・送水装置,トラフ・ダクト,

水切スクリーンの製作

(2) コンベヤ: フレーム,シュート・スカート,駆動装置,点検架台の製作

(3) ホッパ : ホッパ本体, 架台, 手摺・階段の製作

3. 除塵機本体から独立した操作台・管理橋 (手摺, 階段含む), 塵芥用コンテナ等の鋼製付属設備は, 「第 18 章 鋼製付属設備」の製作工数を適用する。

(2) 工数補正

1) 使用材料による補正

主要部材にステンレス材,ステンレスクラッド鋼を使用した場合の補正係数 (Km) は,表-4・54による。

表-4・54 ステンレス鋼及びステンレスクラッド鋼の補正係数 (Km)

区 分	形式	Km ⁰	Km ¹⁰⁰	補正係数算定式
レーキ形除塵機	定置回動式	0.90	1.10	
ネット形除塵機	セパレートネット	0.90	1.10	$Km = (Km^{100} - Km^0) \frac{w1}{w2} + Km^0$
イット/// 小が歴機	エンドレスネット	0.90	1.10	Km : 補正係数 Km ^{loo} ·Km ⁰ : ステンレス鋼 及びステンレスク
	水平ベルト	1.00	1.16	ラッド鋼の補正係数 w1 : ステンレス.
コンベヤ	傾斜ベルト	1.00	1.16	ステンレスクラッド鋼の質量 (kg)
	チェーンフライト	0.85	1.13	w2 :主要部材質量(kg)
ホッパ	電動カットゲート	1.00	1.17	

(注) Kmは、小数第3位を四捨五入して、第2位とする。

2) 構造による補正

レーキ形定置回動式においてバースクリーン構造(目幅)及び引き上げ装置の付加されるものについては構造による補正を行うものとする。なお、補正係数(Ks)は、次による。

Ks=1+Ks1+Ks2

Ks : 補正係数

Ks1:バースクリーン構造補正係数

Ks2:本体引き上げ装置補正係数

なお, Ks1及びKs2は, 表-4·55による。

表-4・55 バースクリーン構造(目幅)による補正係数(Ks)

E /	形式	ジーフカリーン#光歩まず <i>に料</i> Va1	本体引上装置補正係数 Ks2		
区 分	形 式	バースクリーン構造補正係数 Ks1	電動式	手動式	
レーキ形除塵機	定置回動式	(スクリーン目幅 (mm) -100) × (-0.0009)	0. 135	0.108	

(注) バースクリーン構造(目幅)補正係数の適用範囲は,20mm~200mmである。

3) 製作数による補正

同一形式,同一寸法のものを複数(基,台)同時発注する場合の補正係数(Kn)は,表-4・56による。

表-4・56 製作台数による補正係数 (Kn)

区分	形式	2	3	4	5以上
レーキ形除塵機 定置回動式					
ネット形除塵機	セパレートネット	0. 95	0.93	0. 92	0. 91
イット形体壁機	エンドレスネット				

2-4 工場塗装費

(1) 工場塗装面積

標準的な構造の塗装面積の積算は、次による。なお、ステンレス鋼表面の防錆等のための養 生費は、別途積上げによるものとする。

標準塗装面積=工数パラメータ要素 (A×B) ×単位塗装面積 (表-4・57)

・レーキ形定置回動式 A:スクリーン有効幅 (m)

B: スクリーン実長(斜長) (m)

・ネット形 **A**: チェーン中心間長 (m)

B:回転軸芯長 (m)

・コンベヤ単独 A:ベルト (トラフ) 幅 (m)

B: コンベヤ機長 (m)

・水平及び傾斜コンベヤ A:ベルト(トラフ)幅(m)

B:コンベヤ機長 (m)

表-4・57 単位塗装面積

区 分	形式	単位塗装面積算出式	Xの範囲
レーキ形除塵機	定置回動式	y = -13.00X + 13	0~100
ネット形除塵機	セパレートネット	y = -27.00X + 27	0~100
イット形体歴機	エンドレスネット	y = -27.00X + 27	0~100
	水平ベルト	y = -6.22X + 9	0~60
コンベヤ	傾斜ベルト	y = -24.61X + 14	0~30
	チェーンフライト	積上げによる	
ホッパ	電動シリンダ	積上げによる	

(注) 1. X 要素は SUS 使用率 (%) とする。

SUS 使用率=A/B

A:主要部材中のステンレス質量

B: 主要部材全体の質量

2. 下記については、単位標準塗装面積に含まない。

レーキ形:本体架台,スクリーン

- 3. 標準 SUS 使用率については、表-4・57 (X の範囲) を標準とし、これを超える場合 は適用出来ない。
- 4. 酸洗い数量 (ステンレス部) 算出については、SUS 使用率を 0%と仮定して算出した 塗装面積から当該設備の SUS 使用率で算出した塗装面積を差し引き算出する事が出来 る。ただし、スクリーンは含まない。

2-5 直接経費

特許又は特殊技術に係る製作で、専門業者により行われるものは直接経費の項で計上するものとする。

3 直接工事費

3-1 材料費

(1) 材料費構成

材料費の構成は、次のとおりとする。

材料費=据付材料費+補助材料費

(2) 据付材料費

据付材料費の積算は、次式による。

据付材料費=据付労務費×据付材料費率(%)

据付労務費は据付対象設備の据付けに従事する機械設備据付工,普通作業員の労務費をいい,別 途計上される土木工事費,電気工事費中の労務費は対象としない。なお,据付材料費率は,表-4・ 58によるものとする。

表-4・58 据付材料費率 (%)

区分	据付材料費率
レーキ形除塵機 ネット形除塵機 コンベヤ ホッパ	8.0

(注) 1. 据付材料費率に含まれる材料は、次のとおりとする。

製作品・機器単体品等の据付けに必要なステー材,アンカー材及び機側操作盤の二次側電線,配管材料等。

- 2. レーキ形定置回動式除塵機本体のうち、本体架台、原動機架台、操作・管理用足場等は、「第 18 章 鋼製付属設備」の据付材料費を適用する。
- 3. 除塵機本体から独立した操作台・管理橋 (手摺, 階段含む), 塵芥用コンテナ等の鋼製付属設備は,「第 18 章 鋼製付属設備」の据付材料費を適用する。

(3) 据付補助材料費

据付補助材料費の積算は、次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は据付対象設備の据付けに従事する機械設備据付工,普通作業員の労務費をいい,別 途計上される土木工事費,電気工事費中の労務費は対象としない。なお,据付補助材料費率は,表 -4・59によるものとする。

表-4・59 据付補助材料費率 (%)

区分	据付補助材料費率
レーキ形除塵機 ネット形除塵機 コンベヤ ホッパ	2

(注) 1. 据付補助材料費率に含まれる材料は、次のとおりとする。

製作品・機器単体品等を据付ける過程で消費される溶接材、酸素、アセチレンガス等の費用等。

- 2. レーキ形定置回動式除塵機本体のうち、本体架台、原動機架台、操作・管理用足場等は、「第 18 章 鋼製付属設備」の据付補助材料費を適用する。
- 3. 除塵機本体から独立した操作台・管理橋 (手摺, 階段含む), 塵芥用コンテナ等の鋼製付属設備は, 「第 18 章 鋼製付属設備」の据付補助材料費を適用する。

3-2 据付工数

(1) 据付工数は、次式による。

$Y = y \times Ks \times Kn$

Y:据付区分毎1基当りの据付工数(人/基)

y:据付区分毎1基当りの標準据付工数(人/基)

Ks:構造による補助係数 Kn:据付数による補助係数

(2) 標準工数

1) 標準据付工数

除塵設備及び付属設備の据付工数は、表-4・60を標準とする。

区 分	形式工数	工数算出式	工数算出式 X の範囲	X 要素=A×B		
区 刀		Λ ♥ノ単比(土)	A	В		
レーキ形除塵機	定置回動式	y=3.79X+21	5~40	スクリーン有効幅 (m)	スクリーン実長 (斜長) (m)	
ネット形除塵機	セパレートネット	y=3.27X+35	3 ~ 25	ネットチェーン中	回転軸芯長(m)	
	エンドレスネット	y=6.45X+21	2~10	心間長(m)		
	水平ベルト	y = 1.39X + 14	4~25	ベルト幅 (m)		
コンベヤ	傾斜ベルト	y=2.71X+8	4~15	・ ハレ 、中田 (III)	機長(軸芯間長)(m)	
	チェーンフライト	y = 1.39X + 14	3~10	トラフ幅 (m)		
ホッパ	電動カットゲート	y = 6.46X + 4	2~10	貯留容量 (m³)	_	

表-4・60 除塵設備・付属設備標準据付工数

- (注) 1. y は標準据付工数 (人/基), X は「X 要素= $A \times B$ 」欄のとおりである。
 - 2. 標準据付工数に含まれる範囲は、除塵機本体 (レーキ定置回動式、ネット式)、搬送 設備 (コンベヤ)、貯留設備 (ホッパ)、機械操作盤の据付け、機側操作盤以降 (二次 側電気)の電気配線、配管、二次コンクリート打設、コンクリートはつり、始業準備、 機側操作盤以降 (二次側)の試運転調整、清掃及び後片付けである。

なお、コンベヤの点検架台及びホッパの手摺・階段は標準工数に含まれる。

- 3. 標準据付工数に含まれないものは、次のとおりである。
 - レーキ形回動式本体架台の据付け、引込み電源建柱・装柱工事、機側操作盤の一次 側電源工事及び電気配線・配管工事、塗装工事、溶接検査、計装機器の取付・調整工 事、水替工事、掘削等の土木工事。
- 4. 除塵機本体から独立した操作台・管理橋 (手摺・階段含む), 塵芥用コンテナ等の鋼製付属設備については, 「第 18 章 鋼製付属設備」によるものとする。
- 5. 標準据付工数の職種別構成割合は、表-4・61による。
- 6. 標準据付工数の作業別割合は、表-4・62による。

表-4・61 職種別構成割合

職種別構成割合(%)			
機械設備据付工 普通作業員			
80	20		

区 分	形式	作業別構成割合			
区 刀	形式	本体工	架台工	電気配線等	運転調整
レーキ形除塵機	定置回動式	77	_	16	7
ネット形除塵機	セパレートネット エンドレスネット	81	2	12	5

2) 構造による補正

レーキ形定置回動式において本体引上げ装置のあるものについては構造による工数の補正を 行うものとする。なお、構造による補正係数(Ks)は、表-4・63による。

表-4・63 構造による補正係数 (Ks)

		構造による補正係数 Ks		
区 分	形 式	本体引上げ	(休止) 装置	
			手動式	
レーキ形除塵機 定置回動式		1. 15	1.07	

3) 据付数による補正

同時期・現場,同等規模・形式の除塵設備を複数(基,台)据付けする場合は,据付数により工数の補正を行うものとする。なお,据付数による補正係数(Kn)は,表-4・64による。

表-4・64 据付数による補正係数 (Kn)

区 分	形 式	2	3	4	5以上
レーキ形除塵機	定置回動式				
ネット形除塵機	セパレートネット	0. 95	0.92	0. 90	0.88
イツト形体壁機	エンドレスネット				

3-3 現場塗装費

標準塗装面積は、積上げによるものとする。

3-4 直接経費

(1)標準機械器具

据付けに係る機械経費は、表-4・65を標準として、計上するものとする。

なお、機種選定、所要数量、運転日数等については、据付条件並びに関連工事などを勘案の上決 定するものとする。

表-4・65 標準機械器具

機械器具名	標準規格	摘要
クレーン	ラフテレーンクレーン	クレーンの能力は現場条件により決定する
電気溶接機	交流アーク式 (手動・電撃防止器内蔵型) 200A	
電気溶接機	ディーゼルエンジン駆動・直流アーク式・排出 ガス対策型(第2次基準値)200A	商用電源がない場合
発動発電機	排出ガス対策型	商用電源がない場合
その他必要なもの		現場条件により計上する
雑器具損料		機械器具費×2%

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

(2) クレーン標準運転日数

クレーンの運転日数は、表-4・66を標準とする。

表-4・66 ラフテレーンクレーン標準運転日数

機 種	規格	標準運転日数
ラフテレーンクレーン	現場条件による	D=0.051X+1.1

- (注) 1. 標準運転日数のDは運転日数(日),Xは総据付労務工数である。総据付労務工数とは,(注)2の標準機械経費対象作業により計上された機械設備据付工と普通作業員の総工数である。
 - 2. 標準機械経費対象作業

除塵機本体、搬送設備、貯留設備、操作台・管理橋(階段、手摺含む)、塵芥コンテナ、機側操作盤から二次側の電気配線配管工事、機側操作盤。

- 3. 本表は、据付現場が仮締切内で、ドライ施工が可能な場合の標準運転日数である。
- 4. (注) 2以外の作業に必要な機械経費の積算は、各章の機械経費による。
- 5. ラフテレーンクレーンの標準運転日数には、現場までの回送時間は含まれていない。

(3) 電気溶接機標準運転日数

電気溶接機の運転日数は、表-4・67を標準とする。

表-4・67 電気溶接機標準運転日数

機 種	規格	標準運転日数
電気溶接機(交流アーク式(手動・電撃防止器内蔵型)又は ディーゼルエンジン駆動・直流アーク式・排出ガス対策型(第 2次基準値))	200A	D=0.097X+1.2

(注) 1. 標準運転日数のDは運転日数(日),Xは総据付労務工数である。 総据付労務工数とは,(注)2の標準機械経費対象作業により計上された機械設備据 付工と普通作業員の総工数である。

2. 標準機械経費対象作業

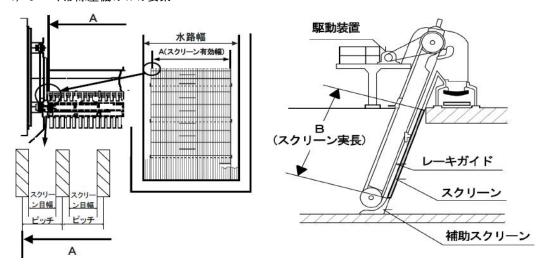
除塵機本体、搬送設備、貯留設備、操作台・管理橋(階段・手摺含む)、塵芥コンテナ、機側操作盤から二次側の電気配線配管工事、機側操作盤。

- 3. 本表は、据付現場が仮締切内で、ドライ施工が可能な場合の標準運転日数である。
- 4. (注) 2以外の作業に必要な機械経費の積算は、各章の機械経費による。
- 5. 溶接機の運転日当りの標準運転時間は,5時間とする。

(4) 試運転費

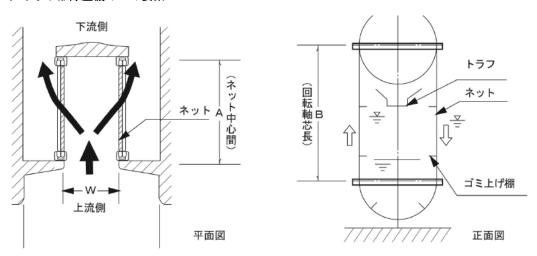
試運転工数は、標準据付工数に含まれているので計上しないものとする。

なお、標準据付工数に含まれる試運転は、機側操作盤以降(二次側)の試運転調整である。

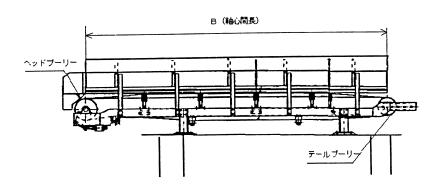

基準の解説

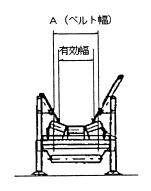
1 直接製作費

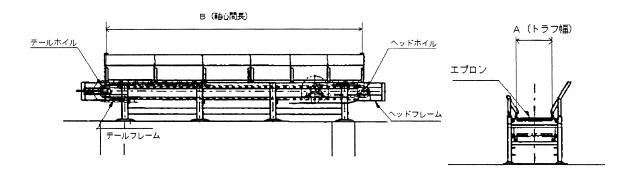
1-1 各形式における X 要素


(1) 除塵設備工数算出式におけるパラメータ範囲を下図に示す。 なお、ホッパの X の要素については、平積みの貯留容量とする。

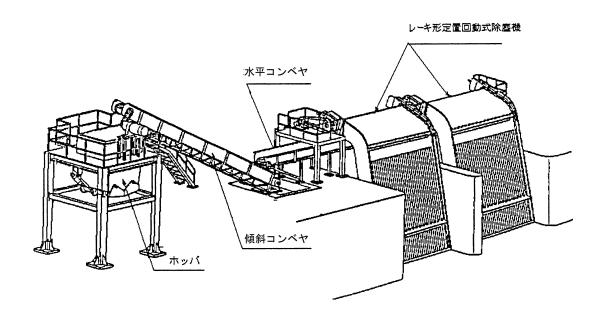
1) レーキ形除塵機の X の要素


A (スクリーン有効幅): スクリーン両端部のスクリーンバー中心間寸法

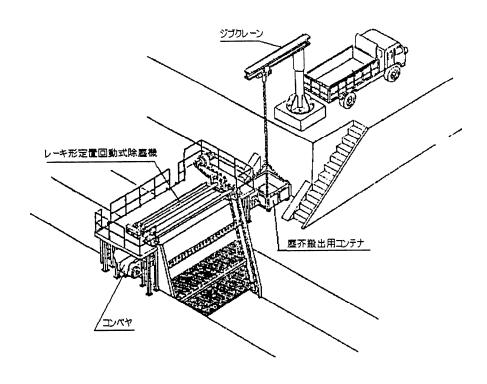

2) ネット形除塵機の X の要素


3) コンベヤの X 要素

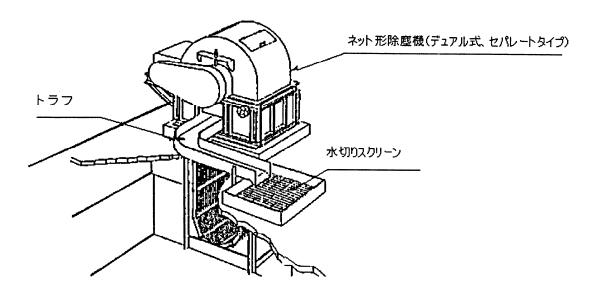
(イ) ベルトコンベヤ



(ロ) チェーンフライト


参考図-1(レーキ形除塵設備)

1) ホッパによる塵芥処理例


参考図-2(レーキ形除塵設備)

2) 塵芥搬出用コンテナによる塵芥処理例

参考図-3(ネット形除塵設備)

3) 水切りスクリーンによる塵芥処理例

第5章 ダム施工機械設備

1 適用範囲

この基準は、コンクリートダム及びフィルダムの施工機械設備の製作、据付け、解体撤去に適用する。

1-1 区分及び構成

ダム施工機械設備の区分及び構成は、表-5・1のとおりとする。

表-5・1 区分及び構成

区 分		構成	
	ケーブル クレーン	固定塔,移動塔,走行・横行・巻上装置(鋼索,トロリ等を含む), 機械室, 軌条,操作制御装置,コンクリートバケット,付属設備等	
	ケーブル クレーン (軌索式)	固定塔,走行・横行・巻上装置(鋼索,トロリ等を含む),機械室,操作制御装置,コンクリートバケット,付属設備等	
	ジ ブ クレーン (走行式)	走行体, 旋回体, ジブ, マスト, 走行・引込・起伏・旋回・巻上装置 (鋼索等を含む), 機械室, 軌条, 操作制御装置, コンクリートバケット, 付属設備等	
骨 材 生 産 設 備		破砕装置(クラッシャ、ミル等), ふるい分け・分級装置(グリズリスクリーン、分級機等), 骨材引出装置(フィーダ類), 洗浄装置, シュートホッパ類, 架台, 操作制御装置, 上屋, 付属設備等	
コンクリート生産設備		コンクリート混合装置,計量装置,貯蔵装置,シュートホッパ類, 給気設備,操作制御装置,上屋,付属設備等	
セメント貯蔵・輸送設備		セメントサイロ, セメント輸送装置 (コンベヤ式, 空気式), 給気設備, 架台, 操作制御装置, 上屋, 付属設備等	
骨材貯蔵・輸送設備		骨材貯蔵ビン,ロックラダー,ベルトコンベヤ,脚,骨材引出装置(フィーダ類),シュートホッパ類,原料ビン,操作制御装置,付属設備等	
濁 水 処 理 設 備		前処理装置,凝集沈降分離装置,中和装置,脱水装置,薬剤供給装置, 槽類,架台,測定·操作制御装置,上屋,付属設備等	
コンクリート冷却設備		冷凍機, クーリングタワー, ポンプ, 槽類, 架台, 操作制御装置, 付属設備等	
付 属 設 備 階段,手摺等		階段,手摺等	

- (注) 1. 骨材貯蔵・輸送設備におけるベルトコンベヤとは、各設備間の骨材の輸送に使用するものをいう。
 - 2. 付属設備とは、各設備とは独立して据付可能な階段、手摺等をいう。

1-2 適用規格

この基準に適用する機種の規格は、表-5・2を標準とする。

表-5・2 適用規格

区 分	適 用 規 格
コンクリート打設設備	巻上荷重 4.5t 吊以上
骨 材 生 産 設 備	骨材生産能力 80t/h以上
コンクリート生産設備	コンクリートプラント[傾胴型] ミキサ容量×台 数 0.75m³×2台以上
セメント貯蔵・輸送設備	サイロ容量 100t 以上 排出能力 30t/h 以上
骨材貯蔵·輸送設備	ベルト幅 450 mm以上
濁 水 処 理 設 備	濁水処理能力 100m³/h 以上
コンクリート冷却設備	冷却能力 80 JRT 以上

2 直接製作費

2-1 材料費

製作に使用する材料及び部品は積上げ計上するものとする。

2-2 機器単体費

機器単体費として計上する品目は、次のとおり。

機関車及び運搬台車、トランスファーカ、冷凍機、空気圧縮機、各種ポンプ、クラッシャ、ミル、スクラバ、クラッシファイア、各種フィーダ、ふるい分け機、金属探知機、スクリューコンベヤ、バスケットエレベータ、セメント空気輸送機、脱水機、撹拌機、計量機、ミキサ、ワイヤーロープ、ロックドコイル、内燃機関、減速機、流体継手、油圧ユニット、油圧ポンプ、油圧モータ、油圧シリンダ、油圧制御装置、電動機、発電機、発動発電機、受配電盤、各種操作盤、通信警報装置、集塵装置、換気装置、計測装置、チェーンブロック、弁及び管継手等

2-3 製作工数

- (1) 製作に要する必要工数を積上げるものとする。
- (2) 付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3 直接工事費

3-1 材料費

(1) 直接材料費

据付にかかる直接材料費は、積上げにより計上するものとする。

(2)補助材料費

据付補助材料費の積算は, 次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は対象としない。 なお、据付補助材料費率は、表-5・3によるものとする。

表-5・3 据付補助材料費率 (%)

区分	据付補助材料費率
ダム施工機械設備	2.0

3-2 据付工数

(1)据付工数

ダム施工機械設備の据付工数は, 次式による。

$Y = w \times v$

Y:設備区分毎の据付工数(人)

w:設備区分毎の据付質量(t)

y:設備区分毎の標準据付工数(人/t)

1 未満

1以上

(2) 標準据付工数

コンクリート冷却設備

ダム施工機械設備の据付工数は、表-5・4を標準とする。

標準据付工数 職種別構成割合(%) 区 分 標準据付工数 (人/t) 普通作業員 据付質量(t) 機械設備据付工 50 未満 y = 8.1コンクリート打設設備 $v = \frac{28}{1} + 4.1$ 50 以上 200 未満 y = 6.3 $y = \frac{65}{} + 1.7$ 骨 材 生 産 設 備 200 以上 \sqrt{X} 30 未満 y = 6.7v= <u>19</u> +3.2 コンクリート生産設備 30 以上 \sqrt{x} セメント貯蔵・輸送設備 y = 5.085 15 y = 7.950 未満 $y = \frac{40}{2} + 2.2$ 骨材貯蔵·輸送設備 50 以上 10 未満 y = 7.4 $v = \frac{11}{1} + 3.9$ 濁水処理設備 10 以上 \sqrt{X}

表-5・4 ダム施工機械設備標準据付工数

(注) 1. y は標準据付工数 (人/t), x は区分毎の据付質量(t)である。据付質量は,据付対象となる設備の部品,機器単体品を含む総質量である。

y=39.7 $y=\frac{37}{}+2.7$

- 2. 標準据付工数は,準備,据付け,試運転調整 (無負荷運転),後片付けまでであり, 掘削工事,基礎工事,塗装工事及び機側までの配線,配管工事は含まないものである。
- 3. コンクリート打設設備の標準据付工数は、ケーブルクレーン(軌索式を含む)及び ジブクレーン(走行式)の据付けの場合のものである。
- 4. 骨材生産設備において、設備の内容、規模等から細分化する場合の取扱いは、製作工数に準ずる。
- 5. 標準据付工数は、トラッククレーン等により据付可能な場合のものである。
- 6. 付属設備を別途単独で据付けを行う場合の積算については,「第 18 章 鋼製付属設備」によるものとする。

3-3 機械経費

- (1)機械器具に係る経費は必要に応じて、簡易ケーブルクレーン、ウインチ、ワイヤロープ、溶接機、空気圧縮機(排出ガス対策型)等について計上するものとする。
- (2) クレーン等は最大部材質量、吊上げ高さ、作業半径等を考慮して据付条件に適合した規格を決定し、台数、運転日数を別途積上げにより計上するものとする。
- (3) その他機械器具

溶接機機械経費の積算は, 次式による。

溶接機機械経費=据付労務費×溶接機機械経費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は、対象としない。

なお、溶接機械経費率は、表-5・5によるものとする。

表-5・5 溶接機機械経費率

(%)

区分	溶接機機械経費率	
ダム施工機械設備	0.5	

3-4 試運転費

各設備単独の試運転調整工数は、据付工数に含まれているので計上しないものとする。 ただし、試運転用の電力等は、別途積算するものとする。

4 解体撤去費

4-1 材料費

解体撤去に係る材料費は、積上げにより計上するものとする。

4-2 **解体撤去工数**

(1)解体撤去工

ダム施工機械設備の解体撤去工数は, 次式による。

$Y = w \times y$

Y:設備区分毎の解体撤去工数(人)

w:設備区分毎の解体撤去質量(t)

y:設備区分毎の標準解体撤去工数(人/t)

(2) 標準解体撤去工数

ダム施工機械設備の解体撤去工数は、表-5・6を標準とする。

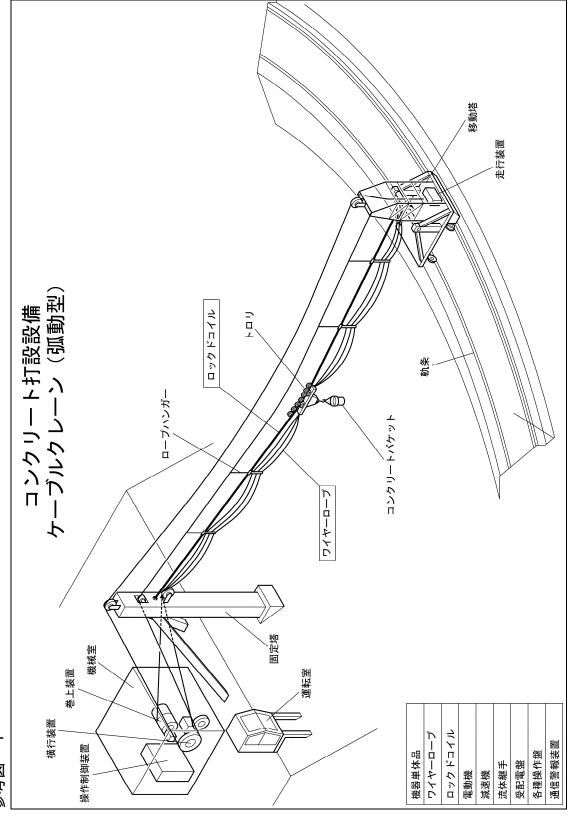
表-5・6 ダム施工機械設備標準解体撤去工数

	標準解体撤去工数	職種別構成割合(%)	
区分		解体撤去工	普通作業員
ダム施工機械設備	標準据付工数×40%	75	25

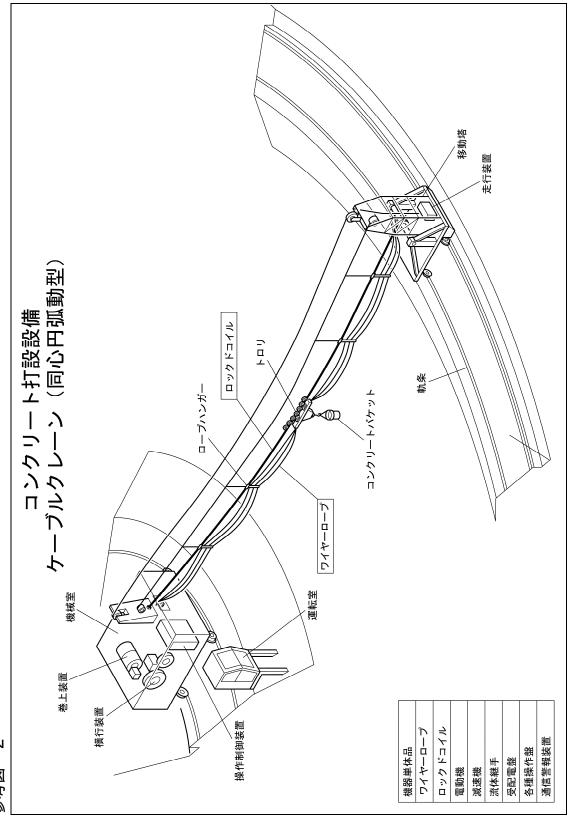
(注) 1. 表中の標準据付工数は、表 $-5\cdot4$ によるものとする。ただし、y は標準解体撤去工数 (人/t), x は解体撤去質量 (t) とする。

解体撤去質量は、転用する機器及び機器取出しのために解体する部材の総質量である。

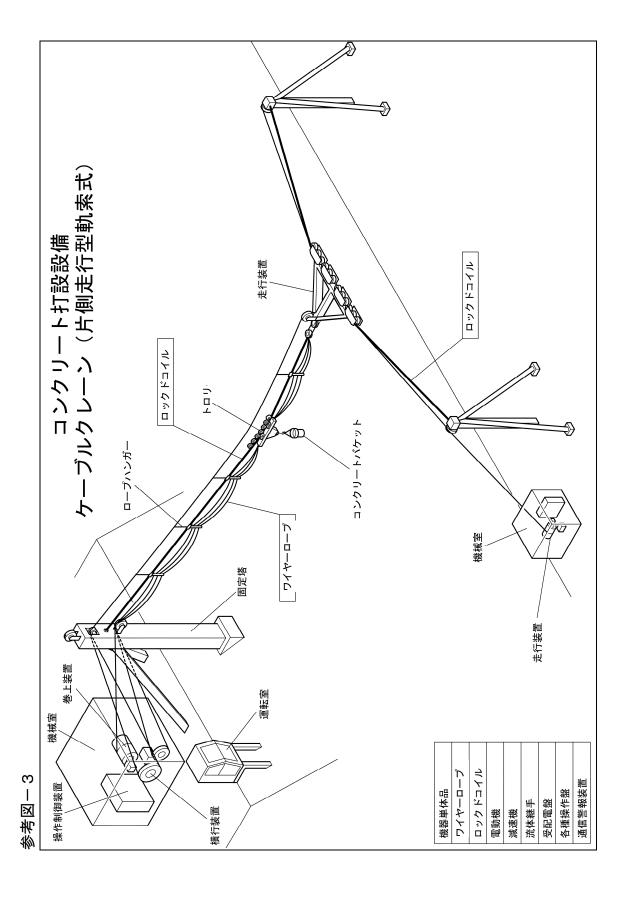
- 2. 標準解体撤去工数は、当該設備の主な機器を他に転用する場合のものであり、準備から別途輸送が出来るまでの解体、小運搬、集積、後片付けまでとする。
- 3. 標準解体撤去工数は、トラッククレーン等により解体撤去可能な場合のものである。

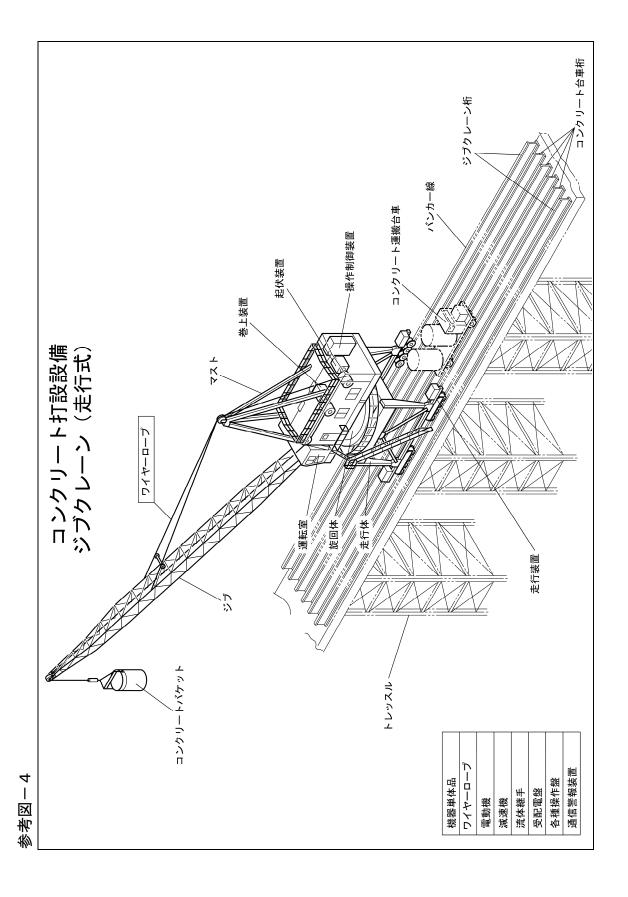

4-3 機械経費

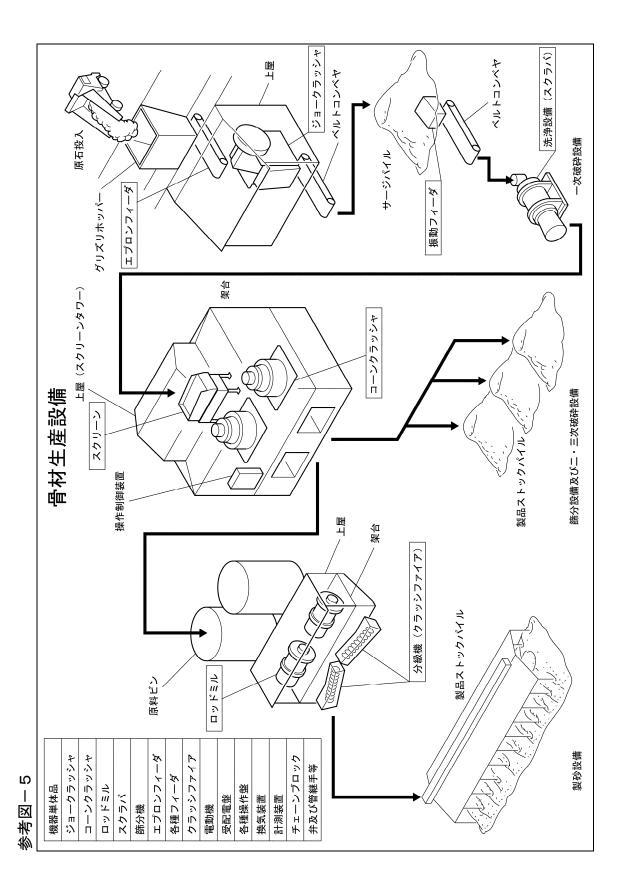
ラフテレーンクレーンの運転日数は、別途積上げにより計上するものとする。


4-4 解体撤去工賃金,間接費

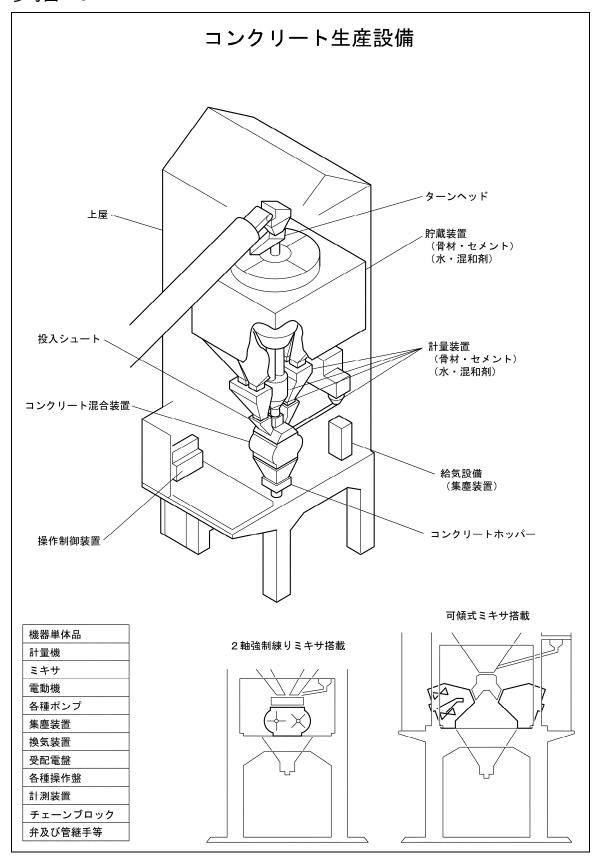
解体撤去工賃金、間接費は、機械設備据付工賃金、間接費を採用するものとする。

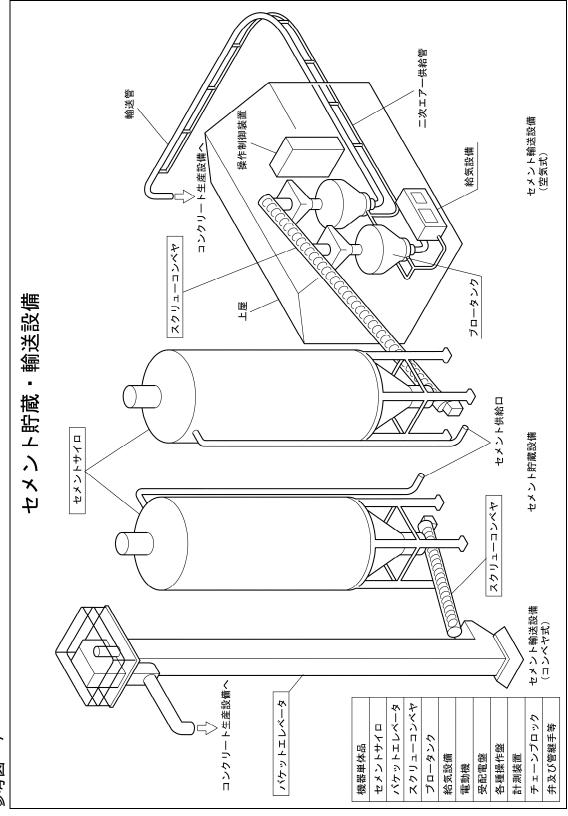

基準の解説

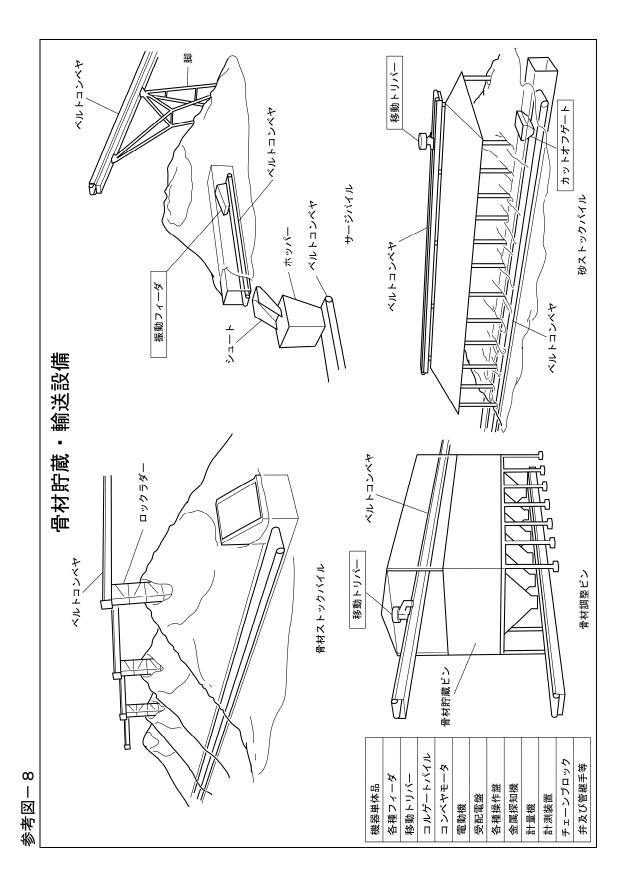

参考図-1


参考図-2

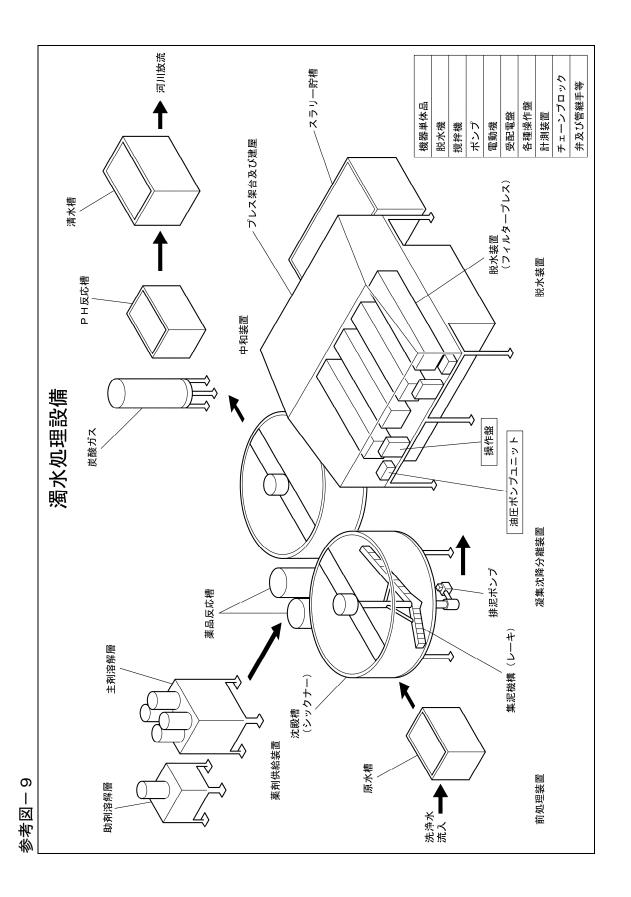
IX - 5 - 10

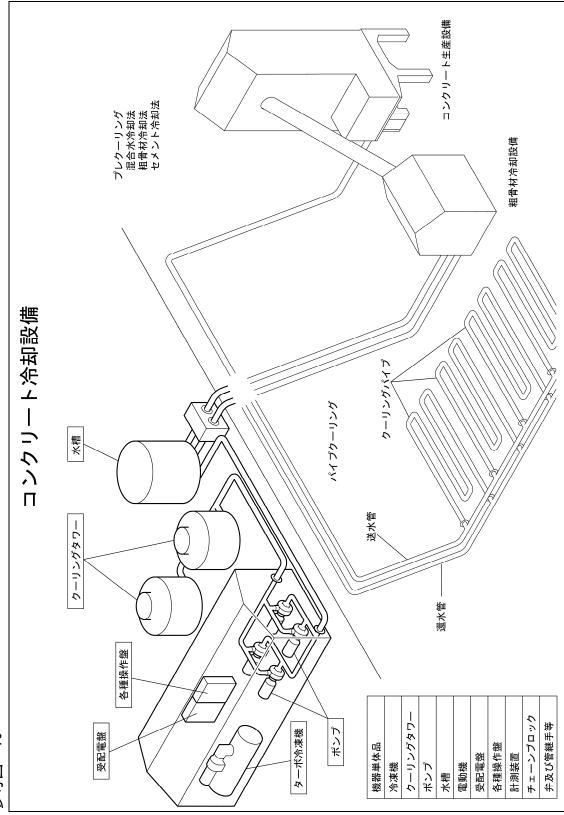



IX - 5 - 11


IX - 5 - 12

参考図-6




参考図-7

IX - 5 - 15

IX - 5 - 16

参考図-10

第6章 トンネル換気設備

① ジェットファン設備

1 適用範囲

この基準は、トンネル換気設備(ジェットファン及びブースタファン、以下ジェットファン)に適用する。

1-1 区分及び構成

トンネル換気設備の区分及び構成は、表-6・1のとおりとする。

表-6・1 区分及び構成

	区分	構成
	本体	ケーシング、動翼、電動機
ジェットファン	吊り金具類	吊り金具、ターンバックル
	手元開閉器箱	
換気制御盤	FB	フィードバック換気制御盤
	投光部	
	受光部	
VI 計	投光部電源ボックス	
	受光部電源ボックス	
	光ファイバーケーブルボックス	
CO 計	CO 計本体	
AV ≑L	検出器	
AV計	変換器	
計測盤 (VI, CO,	AV 計)	

2-1 機器単体費

機器単体費として計上する品目は、次のとおりとする。

ジェットファン (本体, 吊り金具類, 手元開閉器箱), 換気制御盤, V I 計 (煙霧透過率測定装置), C O計 (一酸化炭素濃度計測装置), A V 計 (風向風速測定装置), 計測盤,

その他これらに類するもので積上げ積算しないもの

3 直接工事費

3-1 材料費

据付直接材料費は、据付けに使用するアンカーボルト等の部品をいい、積上げによるものとする。

3-2 据付工数

(1)標準据付工数

1) ジェットファン本体部

ジェットファン本体の据付工数は、表-6・2を標準とする。

公 0 2 フェットングンでは間が平地口工業							
口径	本体据付	体据付 アンカーボルト 手元開閉器箱 総合試運転調		総合試運転調整	職種別構成	割合 (%)	
口 径 (mm)	(人/基)	(人/本)	(人/台)	(人/基)	機械設備 据付工	電工	
630							
1,030	2 00	0.00	0.5	0.75	70	20	
1, 250	3.82	0. 22	0.5	0.75	70	30	
1,530							

表-6・2 ジェットファン本体部標準据付工数

- (注) 1. 本体据付の範囲は、ジェットファン本体の据付け、単独試運転調整、及びそれに伴う準備・後片付けまでとし、電気配線・配管の据付けは含まない。
 - 2. アンカーボルトの範囲は、本体据付に係るアンカーボルトの打込み、吊り金具取付、 引抜試験及びそれに伴う準備・後片付けとする。
 - 3. 手元開閉器箱の範囲は、手元開閉器の据付け、アンカーボルト打込み、及びそれに伴う準備・後片付けまでとし、電気配線・配管の据付けは含まない。
 - 4. 総合試運転調整の範囲は、単独試運転調整後、CO計及びVI計、AV計等を連動させ全装置の総合試運転を行い、運転状況を記録するまでである。なお、総合試運転は自動運転及び手動運転の両方を行うものとする。

2) 換気制御盤・計測機器類

換気制御盤・計測機器類の据付工数は、表-6・3を標準とする。

換気制	-1/211 AG	VI計())計 AV計 計測盤 職種別構成割合(%)			
(人/	/面)	投光部	受光部	(人/台)	(人/台)	(人/面)	機械設備 据付工	電工
FB	2.0	1.5	1.5	3. 0	3. 0	2.0	70	30

表-6·3 換気制御盤·計測機器類標準据付工数

(注) 標準据付工数の範囲は、各装置の据付け、アンカーボルト打込み、単独試運転調整及び それに伴う準備・後片付けまでとし、電気配線・配管の据付け及びトンネル本体のはつり は含まない。なお、VI 計のうち、光ファイバーケーブルボックス、電源ボックスは含まな い。

3) 風量・騒音測定

風量・騒音測定に係る標準工数は、表-6・4を標準とする。

表-6・4 風量・騒音測定標準工数

準備・後片付け	測定	職種別構成	割合 (%)
(人/式)	(人/風量)	機械設備 電 工	
7.0	1.25	70	30

(注) 測定はジェットファンの運転組合せ毎に風量測定を行うものとする。

3-3 直接経費

(1)機械経費

ジェットファン据付に係る機械経費は、表 $-6\cdot 5$ 、表 $-6\cdot 6$ 、表 $-6\cdot 7$ を標準として計上するものとする。

表-6·5 ジェットファン小口径 (630mm)

(基当り)

機械器具名	規 格	標準運転時間	摘 要
高 所 作 業 車 (トラック架装・垂直昇降・プラットフォーム型)	揚程 5m 積載荷重 1.7t	3. 5 時間	芯出し,アンカー打設, ジェットファン据付用
ト ラ ッ ク [クレーン装置付]	ベーストラック 4~4.5t 積 吊能力 2.0t	0.5時間	
その他必要器具			
雑 器 具 損 料			機械器具費×2%

表-6・6 ジェットファン小口径 (1,030mm)

(基当り)

機械器具名	規 格	標準運転時間	摘 要
高 所 作 業 車 (トラック架装・垂直昇降・プラットフォーム型)	揚程 5m 積載荷重 1.7t	3. 5 時間	芯出し,アンカー打設, ジェットファン据付用
ト ラ ッ ク [クレーン装置付]	ベーストラック 4~4.5t 積 吊能力 2.9t	0.5時間	
その他必要器具			
雑 器 具 損 料			機械器具費×2%

表-6・7 ジェットファン大口径 (1,250, 1,530mm)

(基当り)

機械器具名	規格	標準運転時間	摘 要
高 所 作 業 車 (トラック架装・垂直昇降・プラットフォーム型)	揚程 5m 積載荷重 3.2t	3. 5 時間	芯出し,アンカー打設, ジェットファン据付用
トラッククレーン [油圧伸縮ジブ型]	4.9t 吊	0.5時間	
その他必要器具			
雑 器 具 損 料			機械器具費×2%

(注) 雑器具損料は,打設機器,投光器,引抜試験器,発動発電機等の据付用雑器具の損料である。

(2) 試運転費経費等

試運転調整, 風量・騒音測定に関する電気料金は, 別途計上するものとする。

基準の解説

1-1 製作工数

付属設備の製作工数は,「第18章 鋼製付属設備」による。

本体地への範囲は、ジェットファン本体の据付け、単独試運転調整及びそれに伴う準備、後片付けまでとし、電気配線・配管の据付けは含まない。アンカーボルトの打込み、吊り金具取付、引抜試験及びそれに伴う準備・後片付けとする。手元開閉器箱の範囲は、手元開閉器の据付け、アンカーボルト打込及びそれに伴う準備・後片付けまでとし、電気配線・配管の据付けは含まない。総合試運転調整の範囲は、単独試運転調整後、一酸化炭素濃度計測装置及び埋霧透過率測定装置、風向風速測定装置等を連動させ全装置の総合試運転を行い、運転状況を記録するものである。なお、総合試運転は自動運転及び手動運転の両方を行うものとする。 ・吊り金具 アンカーボアト Φ 金具拡大図 アンカーボルト・方向安定金具 ф 標準工数適用範囲 × 11参月 ジェシトファン本体 $\stackrel{\sim}{\sim}$ 1 × ダーンバッ 標準工数の範囲 標準工数の範囲 ※アンカーボルトはステンレス製メカニ アンカーボル 22 定表 カルアンカーボルトとする 標準据付工数算 本体据付 (人/基) 3.82 標準ジェットファン本体部据付工数算定要領 1,030 1,250 1,530口谷 630 (IIII) |ジェットファン |本体部 区分 トファン 換気設備形式 H T

② 送風機設備

1 適用範囲

この基準は、トンネル換気設備(送風機設備)に適用する。

1-1 区分及び構成

トンネル換気設備の区分及び構成は、表-6・8のとおりとする。

表-6・8 区分及び構成

区	分	構	成
	送 風 機	ケーシング,ファンロータ,動力伝達装置 動機等	(軸, 軸受, 軸継手), 減速機, 電
	付 属 装 置	ベルマウス,接続管,異形管,ダンパ等	
送風機設備	補助機器設備	コーナーベーン,スロット調整板,仕切板, 装置,計測装置等	天井クレーン,フィルター,集塵
	操作制御設備	操作・制御盤, 発電装置, 動力・制御用電気換気制御盤, VI計・CO計・AV計・計 備の表ー6・1を準用	

2 直接製作費

2-1 材料費

製作に使用する材料及び部品は積上げ計上するものとする。

2-2 機器単体費

機器単体費として計上する品目は、次のとおりとする。

電動機,減速機,ダンパ駆動装置,各種ポンプ,タンク類,天井クレーン,操作・制御盤,製作原価で計上する弁及び管継手,その他これらに類するもので積上げ積算しないもの

3 直接工事費

3-1 据付工数

据付・試運転調整に要する必要工数を積上げるものとする。

3-2 直接経費

据付けに係る経費は、必要に応じてラフテレーンクレーン等について積上げ計上するものとする。 また、試運転に必要な試運転用電力等についても、別途積上げるものとする。

基準の解説

1-1 標準質量

送風機及び付属装置に使用するボルト、ナットの標準質量は、送風機標準質量の1.8%とする。

標準製作工数の範囲: 図ー1 参照 送風機の標準製作工数の範囲は、ケーシング(ベルマウスと接続管又は異 形管との間にある円筒部分で静翼及び内筒のステー部分を含んだもの。ケー シング、軸受台、静翼、ステー、脚等)、ファンロータ(羽根及びハブの部 分)及び動力伝達装置(電動機、減速機より軸継手、中間軸及び主軸までの 動力伝達機構の部分。主軸、中間軸、軸カバー、軸受箱等)である。 付属装置の標準工数の範囲は、ベルマウス(ケーシングの空気吸入口の部 分)、接続管・異形管(ケーシングとダンパ及びベルマウスの間で伸縮管、 後部取付管を含む静翼又はステーのない部分)及びダンパ(角型多翼式で送 風又は排風を遮断する部分)である。 ベアマウス ダンパ 異形管 ファンロータ ケーシング 動力伝達装置 接続管 標準製作工数の範囲 ーグーナーロ 別表-1 標準送風機及び付属装置製作工数算定要領 送風機及び付属 装置 区分 換気設備形式 送風機

第7章 トンネル非常用施設

1 適用範囲

この基準は, 道路トンネル非常用施設の製作, 据付けに適用する。

1-1 区分及び構成

トンネル非常用施設の区分及び構成の詳細は、表-7・1のとおりとする。

表-7・1 トンネル非常用施設区分及び構成

区 分	構	成
通報設備	通話型通報設備,操作型通報設備, [自動通報設備
警報設備	非常警報装置	
消火設備	消火器,消火栓設備	
避難誘導設備	誘導表示設備,避難情報提供設備,過	醛難通路,排煙設備
その他の設備	給水栓設備,無線通信補助設備,水雪	賁霧設備, 監視設備

2-1 機器単体費

機器単体費として計上する品目は、次のとおりとする。

火災検知器,手動通報装置,端子盤,ポンプ起動押しボタンスイッチ,防災受信盤, 非常用電話ボックス,トンネル内消火栓,消火器箱,消火器,給水栓,送水口,外気温度検知器, 各種ポンプ,操作・制御盤等で積上げ積算しないもの

2-2 製作工数

付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3 直接工事費

3-1 材料費

据付けに使用する配管材等の材料及び各種弁類(逆止弁,仕切弁等),管継手類(伸縮管,継手,フランジ等)等の部品をいい,積上げによるものとする。

3-2 据付工数

据付工数は、「(1) 標準据付工数」により求めた値を「(2) 工数補正」により補正して算出するものとする。

(1) 標準据付工数

1) 各機器の据付工数は、表-7・2を標準とする。

表-7・2 機器標準据付工数

名	称	規格	単 位	機械設備据付工	普通作業員	備	考
押しボタ	ン式通報装置		人/個	0.4	0.3		
トンネ	ル内消火栓	埋込型	人/台	2.3	1.5		
消火	器箱	埋込型	人/台	1.2	1.0		
火 災	検 知 機		人/台	0.3	0. 2		
		1.5kW以下	人/台	0.4	0.3		
		2. 2	"	1.0	0. 7		
		3. 7	"	1.8	1. 2		
		5. 5	"	2.4	1. 6		
		7. 5	IJ	2.9	1. 9		
		11. 0	IJ	3.4	2. 3		
		15. 0	IJ	3.9	2. 6		
		18. 5	IJ	4.2	2.8		
		22. 0	11	4.5	3. 0		
		30. 0	IJ	5.0	3. 3		
各 種	渦巻ポンプ	37. 0	IJ	5. 3	3. 5		
ポンプ	(片吸込形)	45. 0	IJ	5.6	3. 7		
		55. 0	IJ	5. 9	3. 9		
		75. 0	11	6.4	4. 2		
		90. 0	IJ	6.7	4. 4		
		110.0	11	7.0	4.6		
		150. 0	"	7.4	4. 9		
		200. 0	"	7.9	5. 2		
		250. 0	"	8.2	5. 4		
		300. 0	"	8.5	5. 6		
		350. 0	11	8.7	5.8		
		400.0	11	8.9	5. 9		

(つづく)

名	称	規格	単 位	機械設備据付工	普通作業員	備	考
		1.5kW以下	人/台	1.1	0.7		
		2. 2	" 1.3	1.3	0.8		
		3. 7	11	1.6	1.1		
		5. 5	11	1.9	1. 2		
		7. 5	IJ	2.2	1.4		
		11. 0	IJ	2.5	1. 7		
		15. 0	IJ	2.9	1. 9		
h 17.		18. 5	11	3.1	2. 1		
各 種 ポンプ	多段ポンプ	22. 0	IJ	3.4	2. 2		
,,,,		30. 0	II	3.8	2.6		
		37. 0	"	4. 1	2.8		
		45. 0	11	4.5	3. 0		
		55. 0	"	4.9	3. 3		
		75. 0	11	5. 6 3. 7			
		90.0	11	6. 1	4.0		
		110.0	11	6.5	4.4		
		150. 0	11	7.4	5.0		
		0.4kW以下	人/台	1.3	0.9		
		0.75	11	1.7	1.1		
		1.5	IJ	2.2	1. 4		
自動絲	哈 水 装 置	2. 2	IJ	2.5	1. 7	<u> </u>	
日助利	中 小 衣 트	3.7	"	3.1	2.0		
		5. 5	IJ	3.5	2. 4	<u> </u>	
		11.0	IJ	4.6	3. 0	<u> </u>	
		15. 0	"	5. 1	3. 4		

- (注) 1. 機器の取付け、試運転調整を含む。
 - 2. 機器取付に伴うアンカーボルト設置を含む。
 - 3. 上表に示す以外のトンネル非常用施設の機器据付け工数は、別途積上げるものとする。

2) 付属設備

付属設備の直接工事費の積算は、「第18章 鋼製付属設備」によるものとする。

3) その他

「表-7・2機器標準据付工数」に示す以外のトンネル非常用施設の機器据付工数は積上げによる他、機器標準据付工数に次のものは含まれないので、別途積上げ積算するものとする。

- (イ) 操作制御設備の据付け、設備総合試運転調整等。
- (ロ) 配管布設,配筋工事,二次コンクリート,各機器の基礎コンクリート,シンダーコンクリート,掘削等の土木工事。

(2) 工数補正

1) 防震基礎による補正

各種ポンプに防震基礎を使用する場合は、標準据付工数を20%増しとする。

2) 据付数による補正

据付数による補正は、行わないものとする。

3-3 機械経費

(1) 消火栓の据付けに係る機械経費は、表-7・3を標準とする。

表-7・3 消火栓標準機械器具

(1 基当り)

機械器具名 標準規格		標準運転時間	備考
ト ラ ッ ク [クレーン装置付]	ベーストラック 4~4.5t 積 吊能力 2.9t	1.6 h	
雑 器 具 損 料	_	_	機械器具費×2%

- (注) 雑器具損料とは、ハンマドリル、ジャッキ、チェーンブロック、インパクトレンチ、溶接用雑器具の他、投光器、発動発電機等の据付用雑器具の損料である。
- (2) 消火栓以外の据付けに係る経費は、必要に応じてトラッククレーン・溶接機・発電機等について積上げ計上するものとする。

3-4 試運転費経費等

試運転に使用する水道・電力料金については必要に応じて積上げ計上とし、各機関の定める手法 もしくは当該地域の水道局及び電力会社の料金体系等によるものとする。

第8章 消融雪設備

1 適用範囲

この基準は、消融雪設備のうち消雪設備の製作、据付け及びさく井に適用する。

1-1 区分及び構成

消雪設備の区分及び構成は、表 $-8\cdot1$ のとおりとする。

表-8・1 区分及び構成

	区 分		構	成	
さ	く 井	掘削、ケーシング作業	美,砂利充填,	孔内洗浄, 電気検	層,揚水試験
ポ	ンプ	ポンプ, 揚水管, 配電	「盤,操作盤,	制御盤, 検知器,	流量計,圧力計等
配	管	送水管,散水管,散水	くノズル, 管糸	迷手,弁類等	
付	属 設 備	ポンプ据付架台,配管	据付架台等		

2-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=部材費+部品費+補助材料費

- (2) 部材費の構成
 - 1) 部材費の積算は、次式による。

部材費=部材所要量×部材単価

- 2) 部材の所要量の算定及び部材単価は、「第1章 一般共通」に準ずる。
- 3) 部材費は、付属設備を積上げるものとする。
- (3) 部品費

部品費は、散水管及び送水管 (200A $\leq \phi \leq$ 350A) の溶接フランジ等を積上げるものとする。なお、散水管は、二次製品価格を採用するものとする。

- (4) 補助材料費
 - 1) 補助材料費=部材費×補助材料費率(%)
 - 2)補助材料費率は、「第18章 鋼製付属設備」に準ずる。

2-2 機器単体費

機器単体費として計上する品目は、次のとおり。

ポンプ, 各種配電盤, 各種操作盤, 各種制御盤, 各種検知器, 水位計, 流量計等

2-3 製作工数

1) 付属設備の製作工数は、以下による。

付属設備は、ポンプピット、ポンプ受台、配管取付支柱及び取付架台等であり、製作工数は、 「第18章 鋼製付属設備」によるものとする。

2) 送水管 (200A≤ φ≤350A) の製作工数は、別途積上げるものとする。

なお、送水管の製作工数とは、フランジ部と送水管の溶接をいう。

3 直接工事費

3-1 材料費

(1) 据付材料費

送水管 (150A以下)の材料費及び散水ノズル,揚水管,各種弁類 (逆止弁,仕切弁等),圧力計,低水位用電極,井戸ふた,管継手 (チーズ,エルボ,ソケット,カップリング等)等の部品費を積上げるものとする。

(2) 据付補助材料費

据付補助材料費の積算は, 次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、電工、配管工、普通作業員の 労務費をいい、別途計上される土木工事費、電気工事費中の労務費は対象としない。

なお、据付補助材料費率は、表-8・2によるものとする。

表-8・2 据付補助材料費率 (%)

区	分	据付補助材料費率
ポンプ,送	水管,散水管等	2

3-2 ポンプ据付

(1)据付工数

ポンプ据付工数は,次式による。

$Y = y \times n$

Y:設備1施設当りの据付工数(人)

y: ポンプ1台当りの標準据付工数(人/台)

n:設備1施設当りのポンプ台数(台)

(2)標準据付工数

ポンプ据付工数は、表 $-8\cdot3$ を標準とする。

表-8・3 標準据付工数

区分	区分標準据付工数		職種別構成割合(%)		
区 刀	保华拓竹 工数	機械設備据付工	電工	普通作業員	
ポンプ	y=0.05x+2.6 (人/台)	35	20	4.5	
操作盤・試運転	y=5.6 (人/式)	30	20	45	

- (注) 1. v は標準据付工数 (人/台), x は揚水管長さ (m) である。
 - 2. 本工数は, 口径 150mm 以下かつ出力 45kW 以下の深井戸用水中モータポンプ[柱状型] に適用する。
 - 3. ポンプの据付けには、逆止弁、仕切弁、圧力計、揚水管、低水位用電極、制御用電力ケーブル、流量計、吐出曲管、空気弁、相フランジ、井戸ふた、支持バンド、水中ケーブル、基礎ボルト、受台等の据付け及び配線・配管を含むものとする。
 - 4. 操作盤, 試運転は、井戸用操作盤設置及び井戸用ポンプ設備の試運転をいう。
 - 5. 取水位置と制御盤の距離は,10m を標準とし,それ以上の配管,配線については別途計上する。
 - 6. ポンプ室設置等の土木工事は、本工数に含まない。
 - 7. 深井戸用水中モータポンプ [柱状型] 以外の場合, 別途積上げることとする。

(3)機械経費

機械経費の積算は、表-8・4による。

表-8・4 標準機械器具

機械器具名	標準規格	標準運転日数 (日/台)	摘 要
ラフテレーンクレーン	現場条件により決定する	1	
雑器具損料	-	_	機械器具費×2%

- (注) 1. 上記の規格以外のクレーンを使用する場合は、別途積上げるものとする。
 - 2. 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

3-3 送水管, 散水管据付

(1)据付工数

送水管, 散水管据付工数は, 次のとおりとする。

$Y = y \times L \div 100$

Y:設備1施設当りの据付工数(人)

y:標準据付工数 (人/100m)

L:設備1施設当りの施工延長 (m)

(2)標準据付工数

送水管、散水管の据付工数は、表-8・5を標準とする。

表-8・5 標準据付工数

□ / ·	う及び適用範囲	標準据付工数	職種別構成割合(%)		
	7及0、適用軋曲	(人/100m)	機械設備据付工	献据付工 配管工 普通作業	
送水管	$\phi \le 150A$	y = 0.08x + 7.6	25	45	20
达水官	$200A \le \phi \le 350A$	y=0.004x+7.1	25	45	30
散水管	φ ≦150A	y = 0.08x + 7.8	35	35	30

- (注) 1. y は標準据付工数 (人/100m), x は鋼管呼径[JIS G 3452 管の呼び方(A)]である。
 - 2. 適用範囲は、送水管の鋼管呼び径 350A 以下及び散水管の鋼管呼び径 150A 以下のコンクリート埋設配管、土中埋設配管及び露出配管とする。なお、プレキャスト製品には適用しない。
 - 3. 上記算定式において,管径が 150A 以下は人力施工,200A 以上は機械施工の歩掛を示す。
 - 4. ダブル配管の場合には、それぞれの管について工数を算出する。
 - 5. 本工数は散水管,送水管及び配管架台の据付けまで含むものとし,その他の付属設備は含まないものとする。
 - 6. 掘削工,配筋工,コンクリート工等の土木工事は,本工数に含まない。

(3)機械経費

鋼管呼び径 150A 以下の管の据付けは人力を標準とするが, 現場条件によりクレーン等が必要な場合には別途計上するものとする。

鋼管呼び径 200A 以上の管の据付けに係る機械経費は、表-8・6 を標準とする。

表-8・6 標準機械器具

機械器具名	標準規格	標準運転日数 (日/100m)	摘 要
トラック[クレーン装置付]	ベーストラック 4~4.5t 積 吊能力 2.9t	2. 7	
雑器具損料	-	_	機械器具費×2%

- (注) 1. 上記の規格以外のクレーンを使用する場合は、別途積上げるものとする。
 - 2. 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。
 - 3. 機械経費は、施工延長から使用日数を算出後、0.5日単位で端数切り上げとする。

3-4 さく井

標準として積算に用いる工法はパーカッション工法とし、工期、現場条件等を勘案して最も適し た施工法を選択するものとする。

(1) 材料費

ケーシング, 充填砂利等の材料費及び, ストレーナ等の部品費を積上げるものとする。 なお, 充填砂利の標準使用量は, 表-8・7によるものとする。

表-8・7 標準砂利充填量

ケーシング径	200A	250A	300A	350A	400A
掘削径(mm)	350	400	450	500	550
標準砂利充填量 (m³/m)	0.07	0.08	0.10	0.11	0.12

(注) 砂利は、標準として φ6~10mm の豆砂利とする。

(2) さく井工数

1) さく井工数は、表-8・8を標準とする。

表-8・8 標準さく井工数

区分	標準さく井工数(人)	職種別構成	割合 (%)
	宗平で、	特殊作業員	普通作業員
さく井	y = (2.7a+0.067) x+16.6	50	50

- (注) 1. y は標準さく井工数(人), x は掘削深度(m), a は m 当り掘削日数(日/m)である。
 - 2. さく井工数には、掘削、電気検層、ケーシング管設置、砂利充填、孔内洗浄、揚水 試験を含むものとし、さく井機設置撤去の工数は、表-8・10により別途加算する。
 - 3. a の値は、各井戸の掘削速度 α から求めるものとし、次式による。

$$a = \left(\frac{L1}{\alpha 1} + \frac{L2}{\alpha 2} + \frac{L3}{\alpha 3} \cdots\right) \times \frac{1}{L1 + L2 + L3 \cdots}$$

αn : 各土質の掘削速度 (m/日)

Ln : 各土質層の長さ (m)

4. 各土質の掘削速度 α n は、表 $-8\cdot9$ のとおりとする。

表-8·9 掘削速度 (αn)

(m/日)

ケーシング径	200A	250A	300A	350A	400A
粘性土	6. 21	5. 87	5. 47	4. 95	4. 55
砂・砂質土	5. 65	5. 34	4. 96	4.50	4. 14
レキ質土・軟岩	4. 04	3.81	3. 56	3. 22	2. 96
岩塊・玉石	1. 24	1. 17	1. 11	0.99	0. 91

2) さく井機 (パーカッション式) 設置撤去工数は、表-8・10を標準とする。

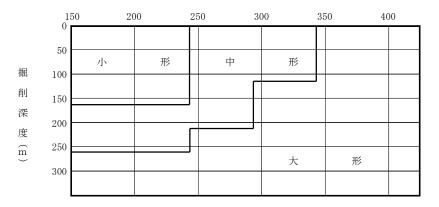
表-8・10 さく井機設置撤去標準工数 (人/台)

区 分	規格	特殊作業員	普通作業員	電工	とびエ
	小形	6	4	2	2
さく井機 分解組立	中形	8	5	2	2
	大形	11	7	3	3

(注) 本工数は、さく井機の設置準備、設置、動力設置撤去、撤去、後片付けまで含むものと する。

(3)機械経費

1) さく井に係る機械の組合せは、表-8・11を標準として、計上するものとする。


表-8・11 標準機械器具

機械器具名	標準規格	数 量	摘要
ボーリングマシン[さく井機・パーカッション式(定置式・片やぐら型)]		1台	
掘削用ビット		1台	
発動発電機[ディーゼルエンジン駆動・排出ガス対策型]		1台	
ベントナイトミキサ[1 槽型]	0.2m ³ ×1 槽 2.2kW 級	1台	
工事用水中モータポンプ[撹拌装置付 (水中泥水ポンプ)]	口径 80mm 全揚程 10m 3.7kW	1台	
電気溶接機[交流アーク式(手動・電撃 防止器内蔵型)]	200~300A	1 台	
深井戸用水中モータポンプ[柱状型]	実際に据付けるポンプと同規格	1台	揚水試験用
トラック[クレーン装置付]	ベーストラック 4~4.5t 積 吊能力 2.9t	1台	
ラフテレーンクレーン [油圧伸縮ジブ型]	25t 吊	1台	さく井機設置撤去
雑器具損料		1式	機械器具費×2%

- (注) 1. 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具等の損料である。
 - 2. さく井機 (パーカッション式) の選定は、ケーシング径、掘削深度により、表-8・ 12 を標準とする。

表-8・12 さく井機選定

ケーシング径 (mm)

3. 発動発電機及び掘削機の規格は、表-8・13を標準として、計上するものとする。

表-8・13 発電機及び掘削機規格

パーカッション	ン機械の規格	所要発電機容量 (kVA)	掘削機容量 (kW)	摘	要
小	形	35	15		
中	形	45	22		
大	形	60	30		

- 4. 必要に応じ水槽、マッドスクリーンを計上するものとする。
- 2) さく井に係る機械の運転日数は、表-8・14を標準とする。

表-8・14 標準運転日数

機械器具名	標準運転日数(日)	運転時間(時間/日)
ボーリングマシン [さく井機・パーカッション式(定 置式・片やぐら型)]	(a+0.017) x+	-2.4	-
掘削用ビット	ax		_
発動発電機[ディーゼルエンジン 駆動・排出ガス対策型]	(a+0.017) x+	-5. 1	7. 6
ベントナイトミキサ[1 槽型]	ax		_
工事用水中モータポンプ [撹拌装置付(水中泥水ポンプ)]	ax		_
電気溶接機[交流アーク式(手動・ 電撃防止器内蔵型)]	(a+0.003) x+	-0.5	2. 4
深井戸用水中モータポンプ [柱状型]	2.8		_
トラック[クレーン装置付]	1.6		6. 3
	小形さく井機の場合	2.4	_
ラフテレーンクレーン [油圧伸縮ジブ型]	中形さく井機の場合	2.9	_
	大形さく井機の場合	3.0	_

- (注) 1. x は掘削深度 (m) である。
 - 2. aの値は、「表-8·8 (注) 3」によるものとする。

- 3. 標準運転日数は,掘削,電気検層,ケーシング管設置,砂利充填,孔内洗浄,揚水 試験及びさく井機設置撤去に係る運転日数である。
- 4. コンダクターパイプは、ケーシングの経費を別途計上するものとする。
- 3) ビット等の損耗品費は、次式による。

損耗品費=さく井労務費×損耗品費率(%)

さく井労務費は、さく井に関する掘削、電気検層、ケーシング管設置、砂利充填、孔内洗浄、 揚水試験に従事する特殊作業員、普通作業員の労務費をいい、それ以外(さく井機設置撤去等) の労務費は対象としない。

なお、損耗品費率は、表-8・15によるものとする。

表-8·15 損耗品費率 (%)

区分	損耗品費率
さく井	20

(注) 損耗品費率には、ノコチューブメタル、ベントナイト、粘土、ワイヤーロープ、酸素、アセチレンガス、溶接棒の使用料が含まれている。

基準の解説

1 直接工事費

- 1-1 送水管, 散水管据付
 - (1) 据付工数

複数の口径の送水管、散水管を据付ける場合の積算は、次式による。

 $Y = \Sigma \quad (yn \times Ln / 100)$

Y : 設備1施設当りの据付工数

yn :各口径毎の標準据付工数(人/100m)

Ln:各口径毎の施工延長(m)

1-2 さく井

(1) 材料費

基準の「3-4 さく井 (1) 材料費 表 $-8\cdot7$ 標準砂利充填量」は、掘削径=ケーシング呼径+150mm を標準としているので、標準以外は、次式による。

 $Y = \pi / 4 \times (D_1^2 - D_2^2) \times L \times 1.1$

Y:充填砂利使用量(m³)

D₁:掘削径(m)

D₂:ケーシング径 (m)

L:砂利充填延長(m)

(2) 機械経費

さく井に係る機械経費のうち、さく井機、トラック (クレーン装置付)等の運転手は、標準さく 井工数に含まれているので別途計上しないものとする。

さく井機設置撤去に係るラフテレーンクレーン[油圧伸縮ジブ型]の運転日数は、小数第1位として積算する。

(3) その他経費

現場条件により、さく井に係る次の経費を別途計上する。

- 1) 掘削土の運搬が必要な場合は、トラック等の費用を別途計上する。
- 2) 泥水処理が必要な場合は、バキュームカー等の費用及び処分費を別途計上する。
- 3) 水道水等が必要な場合は、その費用を別途計上する。

別表-1 標準ポン	別表一1 標準ポンプ据付工数算定要領	1 404 10 11 10	$\frac{1}{1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1+(1$
消雪設備形式	区分	標準ボンブ据付上数算定式	標準上数の範囲
地下水	ポンプ	y = 0.05 x + 2.6	標準工数の範囲:図-1参照
		A ・ 超 準 推 付 上 教 (Y / や)	千嶋田 表 年一 単 田 北 子 世 一 年 十 日 - 4 早 十 - 4 上 4 上 1 十 年 プ / 7 十 年 プ / 7 十 年 プ / 7 十 年 プ / 7 1 十 年 プ / 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
			- An Caputa Hand Hand Hand Hand Hand Hand Hand Han
		X:物水質灰の (m)	クーノル、乳画計、叶口田首、公文井、台ノノノン、井戸やに、文村ノノト、
		適用範囲:口径150mm以下かつ	水中ケーブル、基礎ボルト、受台等の据付け及び配線・配管を含む。
		出力45kW以下の深井戸用	
		大田・一々ポンプ	いては別徐手トする。ポンプ密診署築の十木丁事は含まない、漆井戸
			・ いなどがに ゴッシュ・・ 寸交可 こうオイオ・マロマ ?・。 たい 大田ポンプの基本 国保護 エデベト ファセス
			一 遊上升 化七叶卡
			10年
			中田市体
			井戸蘆 井戸蘆 本語 東京 日本
			00
			お郷土 東・ユ
			, 1000 1000 1000
			自然本位 ————————————————————————————————————
			運転水位 - 2
			//8 -1 ///
			水 位 範
			ジンやレージンを奉材
			ポンプ本体
			がンプストレーナー
			77.
			★中モータ
			ターシングを マンボー教会画
			売壊砂制(ゲラベル)
			井戸庭(ボトム被磨)

操作盤、試運転は井戸用操作盤設置及び井戸用ポンプ設備の試運転を含む。 標準工 数範囲 エントランスキャップ又は端末処理材 材料内訳表 (養地用) (電動機用) (療地用) (接地用) (接地用) (養地用) 材料名 制御盤 自動検知器及び金具 自動検知器電線 ×:範囲外 コンクリート枠 足場ボル 電線管 〇:範囲内 標準工数の範囲 記 Ш 7 標準工数の範囲:図-2参照。 <u>⊠</u> -2 10m (標準) 3,800,810 000,01 別表-2 標準操作盤・試運転工数算定要領 |消雪設備形式| 区分 |標準操作盤・試運転据付工数算定式 出力45kW以下の深井戸用 y:標準操作盤・試運転工数 適用範囲:口径150mm以下かつ 水中モータポンプ y = 5.6操作盤·試運転 半上解

標準工数の範囲	標準工数の範囲: 図-3参照。 散水管、送水管及び配管架台の据付けまで含み、その他の付属設備は含まない。 ない。 掘削工、配筋工、コンクリート工等の土木工事は含まない。 図-3	ボンブ 施 設	
算定要領 標準ポンプ据付工数算定式	$y = 0.08 x + 7.6$ x の適用範囲: $\phi \le 150A$ $y = 0.004 x + 7.1$ x の適用範囲: $200A \le \phi \le 350A$	y = 0.08 x + 7.8 xの適用範囲: φ ≤ 150A y:標準据付工数 (人/100m) x:鋼管呼び径 (A) [JIS G 3452管の呼び方] 適用範囲: 送水管:鋼管呼び径150A以下 コンクリート埋設配管、土中埋設配管、露出配管 配管、露出配管 (プレキャスト製品には適用した い)	
刚表一3 標準送水管,散水管据付工数算定要領 消雪設備形式 	送	授 大 疤	
11表-3 標準送水 消雪設備形式	地下水		

	標準さく井工数 (上) x + 16.6 x : 福達さく井工数 (人) x + 16.6 x : 福門深度 (加) a : m 当り掘削日数 (日/m)	定式	6.6 標準工数の範 図-4参照。 照。掘削、 り 場水試験を含む。さく		14 出帯管	리 A 1	運転水位 マープル、耐御用電力ケーブル	水位電腦 揚水管	メンジを持め、メートン・井	ボンプストレーナー	水中モータ	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
--	---	----------------------	--	--	--------	-------	---------------------	----------	---------------	-----------	-------	---------------------------------------	--

第9章 道路排水設備

1 適用範囲

この基準は、水中ポンプ (口径 400mm 未満) で排水を行う、道路排水設備の製作、据付けに適用する。

1-1 区分及び構成

道路排水設備の区分及び構成は、表-9・1のとおりとする。

表-9・1 区分及び構成

X	分	構成
ポンプ設備		水中ポンプ(本体,水中ケーブル,ベンド,ガイドパイプ,ガイドフック,ポンプ吊上げ用チェーン,ガイドコネクタ等),水位測定装置(フロートスイッチ,電極式等)等
排水設備	操作制御設備	機側操作盤,遠方操作盤,手元開閉器,電気配線・配管等
	配管設備	主配管及び小配管, 弁類 (逆止弁, 仕切弁等), 管継手類 (伸縮管, エルボ, チーズ, フランジ等), 配管架台等
補助相	幾 器 設 備	クレーン装置 (チェーンブロック), 換気扇, 換気装置, 燃料小出槽
電 源	設 備	受電盤,配電盤,発電装置
付 属	設 備	階段,手摺,扉,蓋,スクリーン,排風ダクト,排気管, その他の鋼構造物

2 直接製作費

2-1 材料費

(1) 直接材料費

鋼材のエキストラは、必要に応じ計上するものとする。

2-2 機器単体費

機器単体費として計上する品目は、次のとおりとする。

水中ポンプ, 受電盤, 配電盤, 機側操作盤, クレーン装置 (チェーンブロック), 換気扇 (壁取付型), 換気装置 (床据付型), 発電装置, 水位測定装置等

2-3 製作工数

付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3 直接工事費

3-1 材料費

(1) 直接材料費

据付けに使用する配管材等の材料及び各種弁類(逆止弁,仕切弁等),管継手類(伸縮管,継手,フランジ,パッキン等)等の部品をいい,積上げによるものとする。

(2) 据付補助材料費

据付補助材料費の積算は, 次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は対象としない。

なお、据付補助材料費率は、表-9・2によるものとする。

表-9・2 据付補助材料費率 (%)

区分	据付補助材料費率
道路排水設備	1

3-2 据付工数

(1)標準据付工数

1) 排水設備

排水設備の据付工数は、表-9・3、表-9・4を標準とする。

モータ	準備,	ポンプ	操作盤	電気	総合	職種別構成	割合 (%)
出力 (kW)	後片付け (人/台)	据 付 (人/台)	据付(人/面)	配線 (人/台)	試運転 (人/台)	機械設備据付工	普通作業員
0. 25	0.2	0.9	1.0	1. 1	0. 5		
0.4	0.2	0.9	1.0	1. 1	0. 5		
0.75	0.2	1.0	1.0	1.2	0. 5		
1.5	0.3	1. 1	1. 1	1.3	0. 5		
2.2	0.3	1.2	1. 1	1.4	0. 5		
3.7	0.3	1.4	1.2	1.5	0.6		
5. 5	0.4	1.6	1.3	1.7	0.6		
7. 5	0.5	1.8	1.4	2.0	0. 7	50	50
11.0	0.6	2.3	1.6	2.4	0.8	50	50
15.0	0.7	2.8	1.9	2.9	0.9		
18.5	0.8	3. 2	2. 1	3.3	1. 0		
22.0	0.9	3.6	2.3	3.7	1. 1		
30.0	1.2	4.6	2.8	4.6	1. 4		
37. 0	1.5	5. 5	3. 2	5.5	1.6		
45. 0	1.7	6.5	3. 7	6. 4	1.8		
55. 0	2. 1	7. 7	4.2	7.6	2. 2		

表-9・3 ポンプ設備, 操作制御設備標準据付工数

(1) 準備,後片付けは、ポンプ設置1台当りの現場整理,据付準備及び据付後の後片付け、清掃等の作業をいう。

⁽注) 1. 標準据付工数の範囲は、次のとおりとする。

- (2) ポンプ据付は、構成区分のポンプ設備の現場内小運搬、位置決め、据付け、調整等に要する一切の作業をいう。
- (3) 操作盤据付は、機側操作盤の据付けに要する一切の作業をいう。
- (4) 電気配線は、機側操作盤以降の二次側電気配線に伴う配管、配線、簡易な器具の 取付け等に要する一切の作業をいう。
- (5) 総合試運転は、現場総合試運転に要する一切の作業をいう。
- 2. 一次側電気配線・配管の据付工数は、別途積上げるものとする。
- 3. 本工数は、ポンプ台数が1ポンプピット当り3台以下の場合に適用し、4台以上の場合は別途積上げによるものとする。

	我 ♥ 〒 配音以開張中加リエ奴						
呼び径	標準据付工数	職種別構成	割合 (%)				
(A)	(人/10m)	機械設備据付工	普通作業員				
32	1.8						
40	2. 0						
50	2. 4						
65	2. 9						
80	3. 5						
100	4. 2						
125	5. 1	50	50				
150	6. 0						
200	7.8						
250	9. 6						
300	11. 4						
400	15. 0						
500	18. 6						

表-9・4 配管設備標準据付工数

- (注) 1. 標準据付工数の範囲は、ポンプ槽等コンクリート構造物内の露出配管の場合で、配管設備(弁類、管継手類、配管架台を含む)の接合及び布設に要する一切の作業とする。
 - 2. 配管は、SGP 又は FCD のネジあるいはフランジ接合とし、配管長 (m) は、管継手類、 弁類等を除く配管の設計数量 (m) とする。
- 2) 補助機器設備

補助機器設備の据付工数は、別途積上げによるものとする。

3) 電源設備

電源設備の据付工数は、別途積上げによるものとする。

4) 付属設備

付属設備の据付工数は、「第18章 鋼製付属設備」によるものとする。

5) その他

次の工種については, 別途積上げによるものとする。

配筋工, コンクリート工 (二次コンクリート含む), 掘削, はつり等の土木工事

3-3 機械経費

据付けに係る機械経費は、表-9・5を標準として計上するものとする。

なお,各機械器具の規格,所要数量及び標準運転日数 (クレーンを除く) は,現場条件を勘案の うえ決定する。

表-9・5 標準機械器具

機械器具名	標準規格	標準運転日数	摘要
クレーン		y=0.23x+0.88	y:標準運転日数(日) x:ポンプ設置台数(台)
発動発電機	排出ガス対策型	積上げによる	商用電源がない場合
その他必要なもの		積上げによる	
雑器具損料	_	_	機械器具費×2%

⁽注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

第 10 章 共同溝付帯設備

1 適用範囲

この基準は, 共同溝付帯設備の製作, 据付けに適用する。

1-1 区分及び構成

共同溝付帯設備の区分及び構成は、表 $-10\cdot 1$ のとおりとする。

表-10・1 区分及び構成

	区分	構成
	送風機	換気ファン,換気扇等
換気	付属装置	伸縮継手、消音器、ダンパ等
設備	補助機器設備	シャッタ,クレーン装置,計測装置等
	操作制御設備	操作・制御盤,遠方操作盤,手元開閉器,電気配管・配線等
	ポンプ設備	水中ポンプ (本体+ベンド), ガイドパイプ, ポンプ吊上げ用 チェーン, 水位測定装置 (フロートスイッチ, 電極式等), 据 付架台等
排水 設備	配管設備	主配管及び小配管, 弁類 (逆止弁, 仕切弁等), 配管取付金具, 管継手類 (伸縮管, エルボ, チーズ, フランジ等) 等
	補助機器設備	クレーン装置等
	操作制御設備	操作・制御盤、遠方操作盤、手元開閉器、電気配管・配線等
給水	給水設備	給水栓,給水管
設備	補助機器設備	散水ホース、ホース収納箱等
電源設備	Ħ	受電盤,配電盤,発電装置
防災安全	 設備	表示設備,警報設備,通報設備,消火設備
付属設備	<u> </u>	出入口設備, 仕切板, 階段, 手摺, 扉, 蓋, スクリーン, その他の鋼構造物

2 直接製作費

2-1 材料費

(1) 直接材料費

鋼材のエキストラは、必要に応じ計上するものとする。

2-2 機器単体費

機器単体費として計上する品目は、次のとおりとする。

換気ファン,換気扇,消音器,ダンパ,シャッタ,水中ポンプ,操作・制御盤,遠方操作盤, 手元操作盤,手元開閉器,自家発電装置,表示盤類,接続端子盤,計装機器,水位測定装置, 天井走行クレーン,ホイスト,チェーンブロック,消火器等

2-3 製作工数

付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3 直接工事費

3-1 材料費

(1) 直接材料費

据付けに使用する配管材、操作・制御盤以降の電気配線・配管材及び各種弁類(逆止弁、仕切弁等)、管継手類(伸縮管、継手、フランジ、パッキン等)等の部品をいい、積上げによるものとする。

(2) 補助材料費

据付補助材料費の積算は, 次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は対象としない。

なお、据付補助材料費率は、表-10・2によるものとする。

表-10・2 据付補助材料費率 (%)

区 分	据付補助材料費率
共同溝付帯設備	1

3-2 据付工数

(1) 標準据付工数

1) 換気設備

換気設備の据付工数は、表-10・3を標準とする。

表-10・3 換気設備標準据付工数

モータ	準備,	ファン	操作盤	電気	総合	職種別構成	割合 (%)
出力 (kW)	後片付け (人/台)	据 付 (人/台)	据付(人/面)	配線 (人/台)	試運転 (人/台)	機械設備据付工	普通作業員
0. 15	0.4	2. 1	1.2	1. 1	0. 2		
0. 2	0.4	2. 1	1.2	1. 1	0. 2		
0.3	0.4	2. 1	1.2	1. 1	0.2		
0.4	0.4	2.2	1.2	1. 1	0. 2		
0. 45	0.4	2.2	1.2	1. 1	0. 2		
0.7	0.4	2. 2	1.2	1.2	0. 2		
0. 75	0.4	2. 2	1.2	1.2	0.3		
1. 1	0.4	2.3	1.2	1.2	0.3		
1.5	0.5	2.4	1.3	1.3	0.3	50	50
1.6	0.5	2.5	1.3	1.3	0.3		
2.2	0.5	2.6	1.3	1.4	0.3		
2.4	0.5	2.7	1.3	1.4	0.3		
3. 7	0.5	3.0	1.5	1.5	0.4		
5. 5	0.6	3.5	1.6	1.8	0.5		
7. 5	0.7	4.0	1.8	2.0	0.6		
11.0	0.9	4. 9	2. 1	2.5	0.8		
15. 0	1.0	6.0	2.4	3.0	1.0		

(注) 1. 標準据付工数の範囲は、次のとおりとする。

- (1) 準備,後片付けは、ファン設置1台当りの現場整理、据付準備及び据付後の後片付け、清掃等の作業をいう。
- (2) ファン据付は、構成区分の送風機、付属装置の現場内小運搬、位置決め、据付け、調整等に要する一切の作業をいう。
- (3) 操作盤据付は、操作・制御盤の据付けに要する一切の作業をいう。
- (4) 電気配線は、操作・制御盤以降の二次側電気配線に伴う配管、配線、簡易な器具の取付け等に要する一切の作業をいう。
- (5) 総合試運転は、現場総合試運転に要する一切の作業をいう。
- 2. 一次側電気配管・配線及び手元開閉器,補助機器設備の据付工数は積上げによるものとする。
- 3. 送風機の型式は、軸流式送風機の場合であり、換気扇等の据付工数は別途積上げによるものとする。
- 4. 操作・制御盤は、送風機 5 台以下を制御するものに適用し、6 台以上を制御するものについては、別途積上げによるものとする。

なお、モータ出力が異なる複数の送風機を1面の盤で制御する場合は、最大の出力 に対する工数を採用する。

- 5. 本工数は,送風機台数が1換気所当り2台以下の場合に適用し,3台以上の場合は 別途積上げによるものとする。
- 6. 標準据付工数は、開削工法により構築した共同溝への据付けを標準とする。 なお、シールド工法により構築した共同溝や現場条件が特殊な場合など、標準据付 工数により難い場合は、必要な工数を別途積上げるものとする。

2) 排水設備

排水設備の据付工数は、表-10・4、表-10・5を標準とする。

モータ 準備, ポンプ 操作盤 総合 職種別構成割合(%) 出 力 後片付け 据 付 据 付 試運転 (人/台) (人/台) 機械設備据付工 普通作業員 (kW) (人/台) (人/面) 0.5 0.25 1.3 0.4 0.3 1.3 1.8 0.5 0.75 0.3 1.4 1.8 0.5 1.5 0.3 1.5 0.5 1.9 2.2 0.3 1.7 2.0 0.5 3.7 0.4 2.0 2.2 0.6 50 50 5.5 0.5 2.3 2.4 0.6 2.7 7.5 0.6 2.7 0.7 11.0 0.7 3.4 0.8 3. 1 15.0 0.9 4.2 3.6 0.9 18.5 1.0 4.9 4.1 1.1 22.0 1.2 5.6 4.5 1.2

表-10・4 ポンプ設備, 操作制御設備標準据付工数

- (注) 1. 標準据付工数の範囲は、次のとおりとする。
 - (1) 準備,後片付けは、ポンプ設置1台当りの現場整理,据付準備及び据付後の後片付け、清掃等の作業をいう。
 - (2) ポンプ据付は、構成区分のポンプ設備の現場内小運搬、位置決め、据付け、調整

等に要する一切の作業をいう。

- (3) 操作盤据付は、機側操作盤の据付けに要する一切の作業をいう。
- (4) 総合試運転は、現場総合試運転に要する一切の作業をいう。
- 2. 電気配管・配線(一次側・二次側とも)及び補助機器設備の据付工数は、積上げによるものとする。
- 3. 操作・制御盤は、ポンプ 5 台以下を制御するものに適用し、6 台以上を制御するものについては別途積上げによるものとする。

なお、モータ出力が異なる複数のポンプを1面の盤で制御する場合は、最大の出力 に対する工数を採用する。

- 4. 本工数は、ポンプ台数が1ポンプピット当り2台以下の場合に適用するものとし、3台以上の場合は別途積上げによるものとする。
- 5. 標準据付工数は、開削工法により構築した共同溝への据付けを標準とする。 なお、シールド工法により構築した共同溝や現場条件が特殊な場合など、標準据付 工数により難い場合は、必要な工数を別途積上げるものとする。

呼び径	標準据付工数	職種別構成	割合 (%)
(A)	(人/10m)	機械設備据付工	普通作業員
40	1.4		
50	1.7		
65	2. 1		
80	2.5	50	50
100	3. 1		
125	3.8		
150	4. 5		

表-10・5 配管設備標準据付工数

- (注) 1. 標準据付工数の範囲は、コンクリート構造物内の露出配管の場合で、配管設備(弁 類、管継手類、配管架台含む)の接合及び布設に要する一切の作業とする。
 - 2. 配管は、SGP 又は SUS 管のネジあるいはフランジ接合とし、配管長は、管継手類及び弁類を除く管のみの設計数量 (m) とする。

3) 給水設備

- 1) SGP 及び SUS 管の据付工数は、表 $-10 \cdot 5$ 配管設備標準据付工数 (人/10m) によるものとする。
- 2) HIVP 管の据付工数は、表-10・6 を標準とする。

呼び径	標準据付工数 (人/10m)	職種別構成割合(%)		
(A)		機械設備据付工	普通作業員	
20	0.39		50	
25	0.48	50		
30	0.56	50		
40	0.73			

表-10·6 HIVP 管標準据付工数

- (注) 1. 標準据付工数の範囲は、コンクリート構造物内の露出配管の場合で、配管設備(弁 類、管継手類、配管架台含む)の接合及び布設に要する一切の作業とする。
 - 2. 本工数は、ソケット接合の場合とし、配管長は、管継手類及び弁類を除く管のみの 設計数量 (m) とする。

3) 給水栓の据付工数は、表-10・7を標準とする。

表-10・7 給水栓標準据付工数

呼び径 (A)	単 位	機械設備据付工	普通作業員
20 以下	(人/個)	0.07	0.07

4) 電源設備

電源設備の据付工数は、別途積上げによるものとする。

5) 防災安全設備

防災安全設備の据付工数は、別途積上げによるものとする。

6) 付属設備

付属設備の据付工数は、「第18章 鋼製付属設備」によるものとする。

7) その他

次の工種については、別途積上げによるものとする。

配筋工, コンクリート工 (二次コンクリート含む), 掘削, はつり等の土木工事

3-3 機械経費

据付けに係る機械経費は、表 $-10\cdot8$ を標準として計上するものとする。

なお,各機械器具の規格,所要数量及び標準運転日数 (クレーンを除く) は,現場条件を勘案の うえ決定する。

表-10・8 標準機械器具

機械器具名	標準規格	標準運転日数	摘 要
#10-Y		1 日	換気設備
クレーン		1 日	排水設備
発動発電機	排出ガス対策型	積上げによる	商用電源がない場合
その他必要なもの		積上げによる	
雑器具損料	-	_	機械器具費×2%

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

第 11 章 駐車場設備

① 自走式駐車場設備

1 適用範囲

この基準は、自走式駐車場設備の製作、据付けに適用する。

1-1 区分及び構成

自走式駐車場設備の区分及び構成は、表-11・1のとおりとする。

表-11・1 区分及び構成

区 分	構成
管制設備	誘導設備、ゲート設備、発券機、料金収受装置等
換気・排煙・排水設備	換気用ファン,排煙用ファン,排水設備等
付属設備	ダクト, ダンパ, 昇降機装置等
補助機器設備	消音装置,計測装置等
非常用設備	水噴霧・泡・二酸化炭素・粉末消火設備、給水設備等
電源・操作制御設備	各種操作制御盤,各種監視盤,各種受電盤,各種配電盤, 自家発電装置,制御用配線配管等

2 直接製作費

2-1 機器単体費

機器単体費として計上する品目は、次のとおりとする。

受電盤,配電盤,自家発電装置,操作制御盤,発券機,料金収受装置,シロッコファン,ユニットファン,天井扇,消火ポンプユニット,水中ポンプ,

計測機器等で積上げ積算しないもの等

3 直接工事費

3-1 材料費

据付けに使用する各種ダンパ,ダクト,配管材等の材料及び誘引ノズル,各種スイッチ,各種弁類(逆止弁,仕切弁等),管継手(伸縮管,継手,フランジ等),Y型ストレーナ,CO2濃度表示調節器,温度調節器等の部品をいい,積上げによるものとする。

3-2 据付工数

据付・調整に要する必要工数を積上げるものとする。

3-3 機械経費

据付けに係る経費は、必要に応じてラフテレーンクレーン、溶接機、発電機、水替用水中ポンプ 等について積上げ計上するものとする。

② 機械式駐車場設備

1 適用範囲

この基準は、機械式駐車場設備の製作、据付けに適用する。

1-1 区分及び構成

機械式駐車場設備の区分及び構成は、表-11・2のとおりとする。

表-11・2 区分及び構成

区 分	構成
駐車装置	搬器,駐車室,昇降装置,搬送装置等
管制設備	誘導設備, 車両重量計, ゲート設備, 発券機, 料金収受装置等
換気・排水設備	換気設備・排水設備等
非常用設備	消火設備,給水設備等
付属設備	点検歩廊, 階段, 手摺等
電源・操作制御設備	各種操作制御盤,各種監視盤,各種受電盤,各種配電盤, 自家発電装置,紛失対応装置,各種センサー,制御配線配管等

2 直接製作費

2-1 材料費

(1) 直接材料費 鋼材の寸法エキストラは,厚みエキストラのみとする。

(2) 部品費

直接材料中の部品として計上する品目は次のとおりとする。

ローラ,各種軸受 (メタル,ベアリング),ワイヤーロープ,各種スイッチ,各種リレー,軸継手,チェーン,ボルト・ナット等

2-2 機器単体費

機器単体品として計上する品目は、次のとおりとする。

減速機,制動機,電動機,発券機,料金収受装置,受電盤,配電盤,自家発電装置,監視盤,操作制御盤,紛失対応装置,水中ポンプ,換気装置,水位測定装置等で積上げ積算しないもの

2-3 製作工数

機械式駐車場設備の製作に要する必要工数を積上げるものとする。

2-4 工場塗装

塗装面積は、積上げによるものとする。

3 直接工事費

3-1 材料費

据付けに使用する配管材等の材料及び各種弁類(逆止弁,仕切弁等),管継手(伸縮管,継手,フランジ等)の部品をいい,積上げによるものとする。

3-2 据付工数

据付・調整に要する必要工数を積上げるものとする。

3-3 機械経費

据付けに係る経費は、必要に応じてラフテレーンクレーン、溶接機、発電機、水替用水中ポンプ 等について積上げ計上するものとする。

第 12 章 車両重量計設備

この基準は、車両重量計設備の製作、据付けに適用する。ただし、計量検定は含まない。

1-1 区分及び構成

車両重量計設備の区分及び構成は、表 $-12\cdot 1$ のとおりとする。

表-12・1 区分及び構成

区	分	構成
	本 体 部	積荷ブロック, ロードセル, 横振れ防止装置, 接続箱等
車重計	指示記録部	測定部,設定部,記録部,表示部,電源部,時計部等
	表 示 部	表示装置等(外部表示)
	検 出 部	載荷板、外箱、ロードセル、保温装置等
	指示記録部	測定部,記録部,警報部,表示部,電源部,時計部,筐体等
軸重計	モニター表示器	デジタルモニター表示器、ランプモニター表示器等
	警告表示部	表示器,警報器等
	接 続 箱	接続箱等
付 属	設備	ベースプレート、ストッパプレート等

2-1 材料費

(1) エキストラ

鋼材のエキストラは、必要に応じ計上するものとする。

2-2 機器単体費

機器単体費として計上する品目は、次のとおりとする。

車重計 (本体,指示記録部,表示部),軸重計 (検出部,指示記録部,モニター表示器,表示器, 警報器,接続箱)等で積上げ積算しないもの

2-3 製作工数

付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3-1 材料費

(1) 据付材料費

据付けに使用する配線材及び樹脂モルタル等の材料をいい、積上げによるものとする。

3-2 据付工数

(1) 車重計

車重計 (ピットタイプ) の据付工数, 試運転調整, 荷重試験に要する必要工数を積上げるものとする。

(2) 軸重計

軸重計(秤量20t)の据付工数は、表-12・2を標準とする。

名	称	単 位	機械設備据付工	普通作業員
検	出 部	人/台	5. 7	3.8
指示	記録部	人/面	1. 2	0.8
モニタ	一表示器	人/台	_	_
警告	表示部	人/面	0. 9	0.6
接	続 箱	人/個	0.6	0.4
試 運	転調整	人/台	3. 0	2.0

表-12・2 標準据付工数

- (注) 1. 検出部の標準据付工数には、準備・後片付け、樹脂モルタルの混練り等を含む。
 - 2. 指示記録部の据付工数は、測定部・警報部・記録部・表示部・電源部・時計部等を 同一筐体に収納した1面当りの工数を示す。
 - 3. 警告表示部の歩掛には、建柱を含まない。
 - 4. 各機器間の配線工数は、別途計上するものとする。
 - 5. 試運転調整とは、軸重計の据付完了後に実施する監視・制御・動作状態の確認及び 静荷重試験、走行試験をいう。

3-3 機械経費

(1) 車重計

車重計 (ピットタイプ) の据付け及び現地試験を伴う機械経費は、必要に応じてラフテレーンクレーン等について積上げ計上するものとする。

(2) 軸重計

軸重計(秤量20t)の据付け及び現地試験に伴う機械器具は、表-12・3を標準とする。

表-12・3 標準機械器具

機械器具名	標 準 規 格	機器名	所要日数	摘 要	
トラック	ベーストラック	検出部	1.5	検出部1台当り	
[クレーン装置付]	8 t 積 吊能力 2.9 t	警告表示部	0.5	警告表示部1面当り	
発動発電機[ガソリンエンジン駆動]	2kVA		2.5	1 レーン当り	
試験用トラック	8 t 車	_	0.5	検出部1台当り(荷重試験)	
試験用分銅	8 t	_	0.5	快山部1ロヨり(何里武)	

- (注) 1. 試験用分銅は、最寄りの検定所より運搬費を計上する。
 - 2. 発動発電機は、商用電源がない場合に計上する。
 - 3. 荷重試験を実施しない場合,又は別途専用の試験車両を計上する場合は,試験用トラック及び試験用分銅を計上しない。

第 13 章 車両計測設備

この基準は, 車両計測設備の製作, 据付けに適用する。

1-1 区分及び構成

車両計測設備の区分及び構成は、表 $-13\cdot1$ のとおりとする。

表-13・1 区分及び構成

区 分	構成
重量計測装置	載荷板、軸重センサ、ロードセル、軸重演算装置等
寸法計測装置	超音波センサ、レーザーセンサ、寸法演算処理装置等
車両検知装置	超音波センサ、ループコイル等
車両情報取得装置	CCD カメラ,カメラ制御装置,画像処理装置等
走行状況画像撮影装置	CCD カメラ,カメラ制御装置,画像処理装置等
警告表示装置	警告表示板,機側操作盤等
路側処理装置	計測制御処理装置,情報処理装置,データ電送装置等
電源設備	電源引込開閉機盤 (引込口装置), 分電盤等
門柱	門柱,基礎等

2-1 機器単体費

機器単体費として計上する品目は、次のとおりとする。

重量計測装置, 寸法計測装置, 車両検知装置, 車両情報取得装置, 走行状況画像撮影装置,

警告表示装置、路側処理装置、電源設備で積上げ積算しないもの

3-1 材料費

据付けに使用する門柱、電気配線・配管材及びコンクリート等の材料をいい、積上げによるものとする。

3-2 据付工数

据付・調整に要する必要工数を積上げるものとする。

3-3 機械経費

据付けに係る経費は、必要に応じてトラッククレーン、溶接機、発電機等について積上げ計上するものとする。

第 14 章 道路用昇降設備

① エレベーター設備

1 適用範囲

この基準は, 道路用昇降設備 (エレベーター設備) の製作, 据付けに適用する。

1-1 区分及び構成

道路用昇降設備の区分及び構成は、表 $-14\cdot1$ のとおりとする。

表-14・1 区分及び構成

区 分	形式	構成
エレベーター	機械式	かご、巻上機、巻上機ベース・ビーム、かご用レール、おもり 用レール、おもり、主策、中間ビーム、おもり用緩衝器、かご 用緩衝器、安全装置、網車、操作機器等、受電・制御盤等
	油圧式	かご、シリンダー、プランジャー、かご用ガイドレール、プランジャーガイド、中間ビーム、かご用緩衝器、主策、網車、油 圧パワーユニット、安全装置、操作機器等、受電・制御盤等

2-1 機器単体費

機器単体費として計上する品目は、表 $-14\cdot1$ に示す構成の内容のとおりとする。

3-1 材料費

1)据付材料費

据付けに必要な現地加工するステー材及びアンカー材,受電・制御盤以降の電気配線・配管材,油脂類(作動油,潤滑油を含む)とする。

2) 据付補助材料費

機器単体品等を据付ける過程で消費される溶接材、酸素、アセチレンガス等とする。

3-2 据付工数

標準据付工数の範囲は、機器単体品の据付け、準備、試運転調整、後片付けに要する据付工数を積上げるものとする。

3-3 機械経費

据付けに係る機械経費は、表 $-14 \cdot 2$ を標準として別途積上げするものとする。

なお、機種選定、所要数量、運転日数等については、据付条件並びに関連工事などを勘案のうえ 決定するものとする。

表-14・2 標準機械器具

機械器具名	標準規格	摘	要
電気溶接機	交流アーク式 (手動・電撃 防止器内蔵型) 200~500A		
発動発電機	排出ガス対策型	商用電源がない場合	
その他必要なもの			
雑器具損料			

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

② エスカレーター設備

1 適用範囲

この基準は、道路用昇降設備(エスカレーター設備)の製作、据付けに適用する。

1-1 区分及び構成

エスカレーター設備の区分及び構成は、表-14・3のとおりとする。

表-14・3 区分及び構成

区 分	構	成
エスカレーター	トラス,ステップ,ステップスプログ移動手摺,移動手摺緊動装置,内側御盤,オイルトラップ,安全装置,	則板, 駆動機, 電動機, 受電・制

2-1 機器単体費

機器単体費として計上する品目は、表 $-14\cdot3$ に示す構成の内容のとおりとする。

3-1 材料費

(1) 据付材料費

据付けに必要な現地加工するアンカー材、機側操作盤以降の電気配線・配管材及び潤滑油とする。

(2) 据付補助材料費

機器単体品等を据付ける過程で消費される溶接材、酸素、アセチレンガス等とする。

3-2 据付工数

標準据付工数の範囲は、機器単体品の据付け、準備、試運転調整、後片付けに要する据付工数を積上げるものとする。

3-3 機械経費

据付けに係る機械経費は、表-14・4を標準として別途積上げするものとする。

なお、機種選定、所要数量、運転日数等については、据付条件並びに関連工事などを勘案のうえ 決定するものとする。

表-14・4 標準機械器具

機械器具名	標準規格	摘	要
電気溶接機	交流アーク式 (手動・電撃 防止器内蔵型) 200~500A		
発動発電機	排出ガス対策型	商用電源がない場合	
その他必要なもの			
雑器具損料			

(注) 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。

第15章 ダム管理設備

この基準は、ダム管理設備の製作、据付けに適用する。

1-1 区分及び構成

ダム管理設備の区分及び構成は、表-15・1のとおりとする。

表-15・1 区分及び構成

区	分	構成
昇降設備	エレベーター	搬器,駆動装置,昇降路,乗場,操作制御機器等
	モノレール	キャビン,走行レール,駆動装置,操作制御機器等
流木止設備	網場	主ロープ、フロート、ネット、結束ロープ、ウエイト等
	通船ゲート	ゲート枠, ゲート, 開閉装置, 操作台等
係船設備	インクライン方式	昇降台車,走行レール,巻上装置,浮桟橋,保管船台,操作制御機器等
	浮桟橋方式	浮桟橋, ガイドレール等
水質保全設備	深層曝気方式	揚水筒,巻上装置,給気装置,送気管,浮桟橋,打上・拡散ノズル, 浮上槽,上昇・下降管,操作制御機器等
	表層・全層曝気方式	揚水筒,巻上装置,給気装置,送気管,浮桟橋,打上・拡散ノズル, 操作制御機器等
	噴水方式	揚水ポンプ装置,浮桟橋,打上・拡散ノズル,操作制御機器等

- (注) 1. 昇降設備(エレベーター)とは、人荷用ロープ式のエレベーターをいう。
 - 2. 昇降設備(モノレール)とは、懸垂型、床面走行型であり、集電方式は、トロリ式の場合をいう。
 - 3. 係船設備とは、インクライン方式、浮桟橋方式であり、連絡船方式には、適用しない。
 - 4. 水質保全設備とは、深層、表層・全層の各曝気方式及び噴水方式をいう。

2-1 機器単体費

機器単体費として計上する品目は、表 $-15 \cdot 1$ に示す構成の内容のとおりとする。

2-2 付属設備

各設備に付帯する付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3 直接工事費

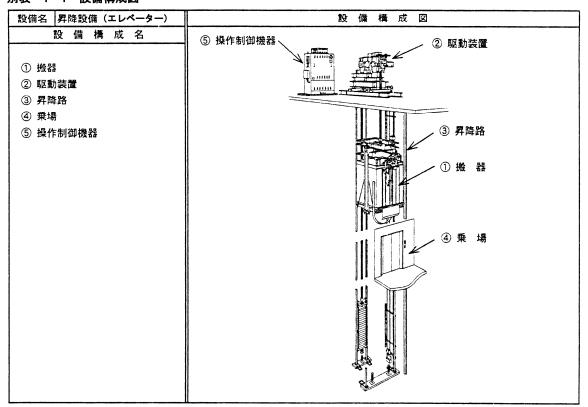
3-1 材料費

据付けに必要な現地加工するステー材,アンカー材及び電気配線・配管材等は積上げ計上するものとする。

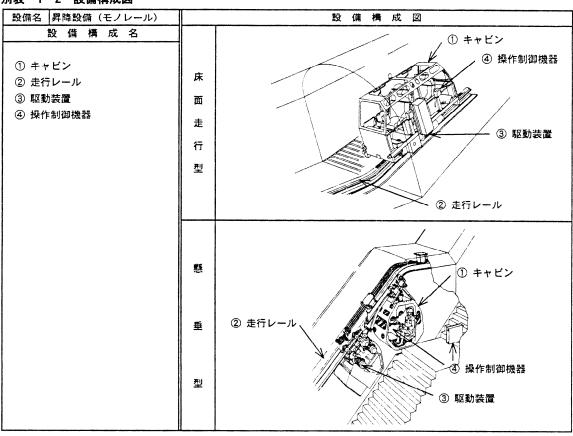
3-2 据付工数

据付・試運転調整等に要する必要工数を積上げるものとする。

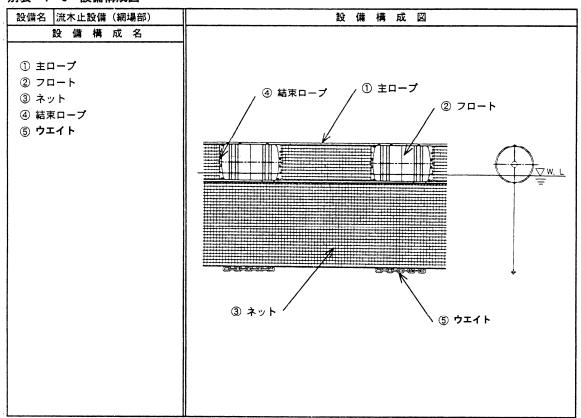
3-3 機械経費

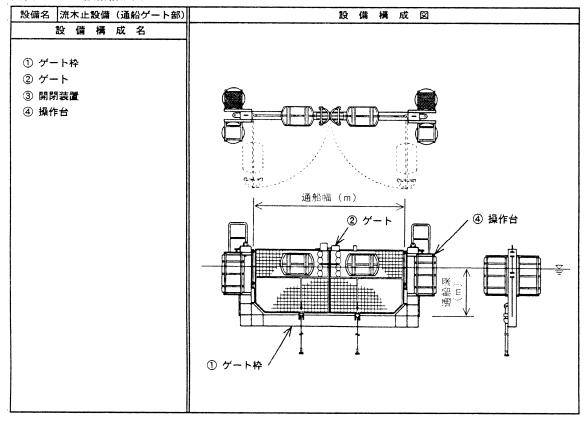

据付けに係る機械経費は必要に応じてラフテレーンクレーン等について積上げ計上するものとする。

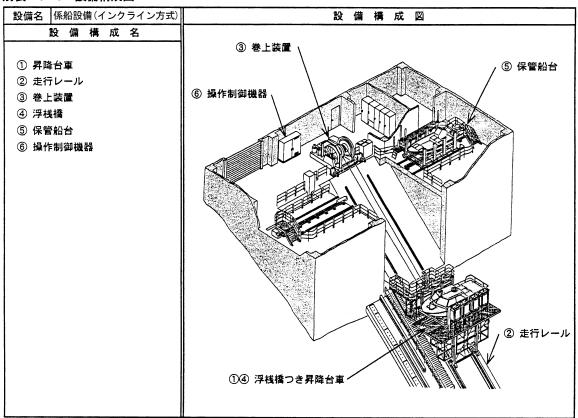
基準の解説

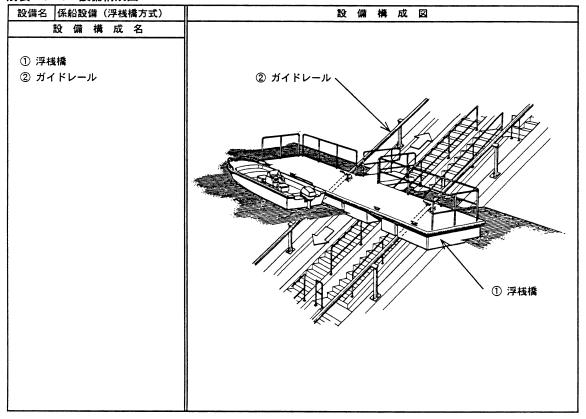

1-1 区分及び構成

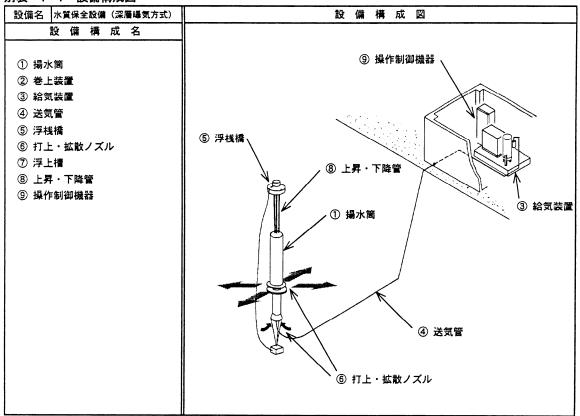
標準的な設備の構成区分及び構成については、別表-1「設備構成図」によるものとする。

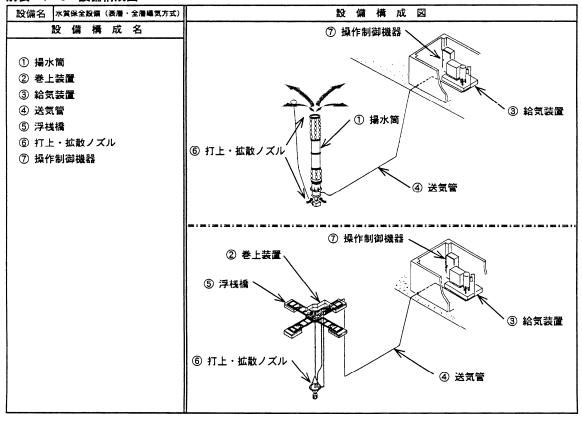

別表-1-1 設備構成図

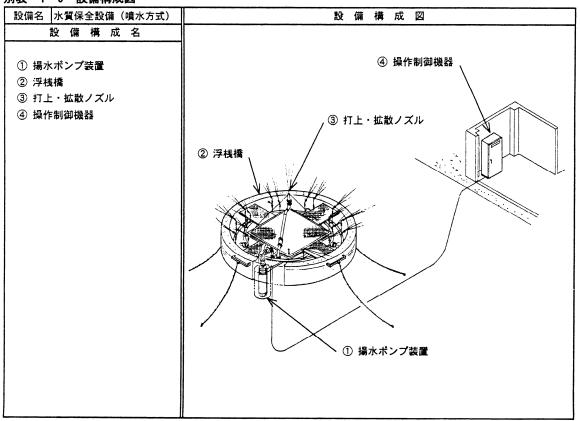

別表-1-2 設備構成図


別表-1-3 設備構成図


別表-1-4 設備構成図


別表-1-5 設備構成図


別表-1-6 設備構成図


別表-1-7 設備構成図

別表-1-8 設備構成図

別表-1-9 設備構成図

第 16 章 遠方監視操作制御設備

この基準は河川,道路に点在する機械設備の広域管理を目的として設置する遠方監視操作制御設備の製作・据付けに適用する。

1-1 区分及び構成

遠方監視操作制御設備の区分及び構成は、表-16・1のとおりとする。

表-16・1 区分及び構成

区 分	構 成
操作制御設備	遠方監視操作制御盤(卓),データ処理装置,入出力装置, 各種コントローラ,データサーバ等
監視設備	CCTV 制御盤,CCTV カメラ装置,音声警報装置等
伝送設備	ハブ、ルータ等
計測設備	水位計,温度計,圧力計,振動計,開度計等

2-1 機器単体費

機器単体費として計上する品目は、次のとおりとする。

遠方監視操作制御盤(卓),データ処理装置,入出力装置,各種コントローラ,データサーバ, CCTV 制御盤,CCTV カメラ装置,音声警報装置,伝送装置(ハブ,ルータ),計装機器(水位計, 温度計,圧力計,振動計,開度計)等

3-1 材料費

据付けに使用する配線, 配管材等の材料及び, 管継手類等の部品は, 積上げ計上するものとする。

3-2 据付工数

据付・調整に要する必要工数を積上げるものとする。

3-3 機械経費

据付けに係る経費は、必要に応じてトラッククレーン等について積上げ計上するものとする。

4 間接工事費

遠方監視操作制御設備の対象となる主たる設備の率を採用するものとする。

第 17 章 河川浄化設備

1 適用範囲

この基準は、河川の水質改善を目的として設置する浄化設備の製作、据付けに適用する。 なお、工事用目的に設置する濁水処理設備等は含まない。

1-1 区分及び構成

河川浄化設備の区分及び構成は、表-17・1のとおりとする。

表-17・1 区分及び構成

区 分	構成
取 水 設 備	取水ゲート、取水ポンプ、除塵装置等
浄 化 設 備	撹拌装置,沈澱装置,ろ過装置,接触酸化装置,曝気装置,逆洗装置等
排水処理設備	濃縮装置,脱水装置,曝気装置等
薬 注 設 備	薬品貯蔵装置,薬注ポンプ等
監視操作制御設備	機側操作装置,中央監視操作装置等
計 測 設 備	流量計,濁度計等各種センサー類
その他設備	施設内排水設備,施設内換気設備,点検設備等
付 属 設 備	各種架台,歩廊等

2 直接製作費

2-1 機器単体費

機器単体費として計上する品目は、次のとおりとする。

電動機,撹拌機,掻寄機,ろ過装置,ろ材,脱水機,薬品貯留槽,各種ポンプ,各種ブロワ,油圧シリンダ,油圧ユニット,油圧モータ,ゲート開閉機,バルブ駆動装置,空気圧縮機,各種センサー,フロート,ウインチ,機側操作盤,中央監視操作盤,天井走行クレーン,ホイスト,チェーンブロック,自家発電装置,弁及び管継手等

2-2 製作工数

- (1) 製作に要する必要工数を積上げるものとする。
- (2) 付属設備の製作工数は、「第18章 鋼製付属設備」によるものとする。

3 直接工事費

3-1 据付工数

各機器等の据付・調整に要する必要工数を積上げるものとする。

3-2 機械経費

据付けに係る経費は、必要に応じてラフテレーンクレーン等について積上げるものとする。

3-3 試運転費

試運転費は、設備全体の総合的な試運転調整費用であり、総合試運転に要する薬品、電力料金及 び必要工数を積上げ計上するものとする。

第 18 章 鋼製付属設備

1 適用範囲

この基準は、水門設備、揚排水ポンプ設備、除塵設備及びトンネル換気設備・非常用施設、消融雪設備 の運転操作、保守、安全管理のために主体となる設備とは独立して設置する小規模でかつ簡単な鋼構造物 に適用する。

1-1 区分及び構成

鋼製付属設備の区分及び内容は、表 $-18\cdot1$ のとおりとする。

表-18・1 鋼製付属設備の区分及び内容

区分	内容	摘 要
A	設備の操作管理のために設置される小規模 鋼製橋梁及び歩廊	な 操作管理橋 (人道用)・歩廊・点検 歩廊
В	形鋼・縞鋼板等を主材とした構造で溶接及び、 工の程度が比較的高いもの	加階段・螺旋階段等に類するもの
С	鋼管・平鋼・棒鋼等を主材とした構造で溶接 び加工の程度が比較的高いもの	及 防護柵・梯子・タラップ等に類す るもの
D	形鋼・縞鋼板・棒鋼等を主材とした構造で比 的単純な構造のもの	校 ピット蓋・受台・組立架台
Е	平鋼・鋼板等を主材とした構造で、溶接が少く組立点数が多いもの	なスクリーン

(注) 鋼製付属設備にリーン二相鋼 (SUS821L1, SUS323L) 又はスーパー二相鋼 (SUS327L1) 等 の新材料を使用した設備には適用出来ないので、別途積上げるものとする。

2 直接製作費

2-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=直接部材費+部品費+補助材料費

(2) 直接部材費

1) 直接部材費の積算は、次式による。

直接部材費=直接部材所要量×直接部材単価

- 2) 直接部材の所要量の算定及び部材単価は,「第1章 一般共通 ⑤ 1 1-1 (1) 1) 直接材料 費」に準ずる。
- 3) 寸法エキストラは、厚みエキストラ、幅エキストラとし、必要に応じて計上するものとする。

(3) 部品費

部品費の積算は, 次式による。

部品費=部品所要量×部品単価

なお、部品費に含まれる品目は、表-18・2のとおりとする。

表-18・2 部品の品目

アンカーボルト、ボルト・ナット、ヒンジ、カギ、鎖、反射テープ等

(4) 補助材料費

補助材料費の積算は、次式による。

補助材料費=直接部材費×補助材料費率(%)

なお、補助材料費率は、表-18・3によるものとする。

表-18・3 補助材料費率 (%)

区 分	補助材料費率
鋼製付属設備	13. 0

(注) 補助材料費とは、溶接材、酸素ガス、アセチレンガス、接着材料等の費用をいう。

2-2 機器単体費

設備の製作に当って、ほとんど加工せずに設備に組み込むことが出来る機器、また単体の製品で そのまま設備の構成要素となる機器の費用を積上げ計上する。

2-3 製作工数

(1) 製作工数

鋼製付属設備の製作工数は,次式による。

$Y=y \times x \times Km \times Kn$

Y:製作区分毎1基(橋)当りの製作工数(人/基,橋)

y : 製作区分毎1基(橋)当りの標準製作工数(人/t)

x : 製作区分1基(橋) 当りの製作質量(t/基,橋)

Km : 使用材料による補正係数

Kn:製作数による補正係数

(2) 標準製作工数 (v)

鋼製付属設備の標準製作工数 (y) は、表-18・4を標準とする。

表-18·4 標準製作工数 (y)

区分	工数算出式(人/t)	適用範囲(t)
A	$y = 12.20x^{-0.434}$	0.5≦ x ≦10
В	$y = 13.61x^{-0.302}$	0.4≦ x ≦5
С	y=13.61x ^{-0.302}	0.1≦ x ≦5
D	y=10.34x ^{-0.419}	0.1≦ x ≦5
Е	$y = 10.34x^{-0.419}$	0.2≦ x ≦5

- (注) 1. 工数算出式 y は標準製作工数 (人/t), x は製作区分 1 基 (橋) 当りの製作質量 (t) である。
 - 2. 区分 C, D の工数算出式の x に入力する質量は、各区分毎の全体製作質量(t)により算出を行う。
 - 3. 製作質量とは、仕上がり質量であり、部品の質量は含まない。
 - 4. 区分は、表-18・1のとおりとする。

(3) 工数補正

1) 使用材料による補正 (Km)

鋼製付属設備にステンレス鋼,ステンレスクラッド鋼を使用した場合の補正係数 (Km) は,表 $-18 \cdot 5$ による。

表-18・5 ステンレス鋼及びステンレスクラッド鋼の使用比率による補正係数 (Km)

設備区分	係数 Km ^o	係数 Km ¹⁰⁰	補正係数算定式
鋼製付属	1.00	1.30	Km= (Km ¹⁰⁰ -Km ⁰) × Km ¹ + Km ⁰ Km : 使用材料による補正係数 Km ¹⁰⁰ : 係数 Km ¹⁰⁰ の値 Km ⁰ : 係数 Km ⁰ の値 Km ¹ : 部材の混合比率= W ₁ /W ₂ W ₁ : 部材における SUS、SUS クラッド鋼の質量 (kg) W ₂ : 部材質量 (kg) Km は,小数第3位を四捨五入して,第2位とする。

(注) 標準製作工数の区分 D, E については、ステンレスを使用した場合でも、使用材料による 工数補正は行わないものとする。

2) 製作数による補正

同一形状,同一規格のものを複数基(橋)同時発注する場合の補正係数(Kn)は,表 $-18\cdot6$ による。

表-18・6 製作数(基, 橋)による補正係数(Kn)

製作数(基,橋)	1	2	3	4	5以上
補正係数 (1 基・橋当り)	1.00	0.95	0. 93	0.92	0. 91

(注) 標準製作工数の区分 C, D については、製作数による補正は行わないものとする。

2-4 工場塗装費

各鋼製付属設備の塗装面積は、積上げにより行い、工場塗装費を計上する。

3 直接工事費

3-1 材料費

(1) 材料費の構成

材料費の構成は、次のとおりとする。

材料費=据付材料費+据付補助材料費

(2) 据付材料費

据付材料費の積算は、次式による。

据付材料費=据付材料所要量×据付材料単価

- (注) 1. 据付材料とは、据付けに必要な現地加工する据付用鋼材等である。
 - 2. 据付材料の所要量は積上げによるものとする。

(3) 据付補助材料費

据付補助材料費の積算は, 次式による。

据付補助材料費=据付労務費×据付補助材料費率(%)

据付労務費は、据付対象設備の据付けに従事する機械設備据付工、普通作業員の労務費をいい、 別途計上される土木工事費、電気工事費中の労務費は対象としない。

なお、据付補助材料費率は、表-18・7によるものとする。

表-18・7 据付補助材料費率 (%)

区 分	据付補助材料費率
鋼製付属設備	1.0

(注) 据付補助材料費率に含まれる据付補助材料は、製作品及び機器単体品等を据付ける過程 で消費される溶接材、酸素、アセチレンガス等である。

3-2 据付工数

(1) 据付工数

鋼製付属設備の据付工数は、次式による。

$Y=v \times x \times Kn$

Y:設備1基(橋)当りの据付工数(人/基,橋)

y : 設備の標準据付工数 (人/t)

x : 設備1基(橋) 当りの据付質量(t/基,橋)

Kn:据付数による補正係数

(2) 標準据付工数 (y)

鋼製付属設備の標準据付工数 (y) は、表 $-18\cdot8$ を標準とする。

表-18·8 標準据付工数 (y)

区分 工数算出式(人/t)		· 本田	職種別構成割合(%)		
区 分	上	適用範囲(t)	機械設備据付工	普通作業員	
A	$y = 5.09x^{-0.434}$	0.5≦ x ≦10			
В	$y = 5.95x^{-0.427}$	0.4≦ x ≦5			
С	$y = 5.95x^{-0.427}$	0.1≦ x ≦5	80	20	
D	$y = 5.95x^{-0.427}$	0.1≦ x ≦5			
Е	$y = 4.30x^{-0.584}$	0.2≦ x ≦5			

(注) 1. 工数算出式 y は標準据付工数 (人/t), x は区分毎の1基(橋)当りの据付質量(t)である。

- 2. 区分 C, D の工数算出式の x に入力する質量は, 各区分毎の全体据付質量(t)である。
- 3. 据付質量とは、製作質量に部品等の質量を加えた総質量である。
- 4. 区分は、表-18・1 のとおりとする。

(3) 工数補正

1) 据付数による補正 (Kn)

同時期・同現場、同形状・規格の鋼製付属設備を複数基(橋)据付ける場合は、据付数(基,橋)により工数の補正を行うものとする。なお、据付数による補正係数(Kn)は、表-18・9による。

表-18・9 据付数(基, 橋)による補正係数(Kn)

据付数(基,橋)	1	2	3	4	5以上
補正係数(1 基・1 橋当り)	1.00	0.95	0. 92	0.90	0.88

(注) 標準据付工数の区分 C, D については、据付数による補正は行わないものとする。

3-3 機械経費

(1) 標準機械器具

据付けに係る機械経費は、表-18・10を標準として計上するものとする。

なお、機種選定、所要数量、運転日数等については、据付条件並びに関連工事などを勘案のうえ 決定するものとする。

 機械器具名
 標準規格
 摘
 要

 クレーン
 クレーンの能力は最大部材質量,作業半径等を考慮して決定する

 電気溶接機
 交流アーク式 (手動・電撃防止器内蔵型) 200A

 その他必要なもの
 現場条件により計上する

 雑器具損料
 機械器具費×2%

表-18・10 標準機械器具

- (注) 1. 雑器具損料とは、ジャッキ、チェーンブロック類、溶接用雑器具、据付用雑器具等の損料である。
 - 2. 溶接機の運転日当りの標準運転時間は、5時間とする。

基準の解説

1 適用範囲

1-1 適用範囲

- (1) 鋼製付属設備の適用範囲は,主たる構造物(ポンプ,ゲート等)に付帯する一般鉄鋼小構造物(人道用で操作管理するために設置する小規模な操作管理橋,階段,防護柵,配管配線用ピット蓋,スクリーン等)を対象とする。
- (2) アルミニウム製の手摺等を製作する場合は、適用出来ない。
- (3) 鋼製付属設備のスクリーンとは、河川用・水路用水門設備、道路排水設備の付属設備及び揚排水機場等のゴミ除けスクリーンを対象とする。

2 直接製作費

2-1 製作工数

- (1) 管理橋は、「本体(桁+床版)」と「防護柵」により構成されるが、製作工数の算出については、 本体と防護柵を一体のものとして積算を行う。
- (2) 階段は、「本体(桁+踏板)」と「手摺」により構成されるが、製作工数の算出については、本体と手摺を一体のものとして積算を行う。

2-2 ステンレス鋼表面処理費

ステンレス鋼表面処理費の積算は、次式による。

ステンレス鋼表面処理費=製作労務費×ステンレス鋼表面処理率(%)

なお、製作労務費とは Km (使用材料による補正係数), Ks (構造による補正係数), Kh (水深による補正係数), Kn (製作数による補正係数) を加味されたものであり、ステンレス鋼表面処理率は、表-1 によるものとする。

(注) y はステンレス鋼表面処理工率 (%), x は 1 門(基) 当りのステンレス使用率 (%) である。

部材における
$$W_1$$
 SUS、SUS クラッド鋼の質重(kg) X ステンレス使用率= W_2 部材質重(kg)

3 直接工事費

3-1 据付工数

- (1) 管理橋は、「本体(桁+床板)」と「防護柵」により構成されるが、据付工数の算出については、 本体と防護柵を一体のものとして積算を行う。
- (2) 階段は、「本体(桁+踏板)」と「手摺」により構成されるが、据付工数の算出については、本体と手摺を一体のものとして積算を行う。

3-2 機械経費

(1) 操作管理橋クレーン標準運転日数

操作管理橋(区分A)のクレーン運転日数等は、表-2を標準とする。

表-2 クレーン標準運転日数

機械器具名	所要量	摘	要
各種クレーン	D=0.113x+0.3	D=標準運転日数 x=据付質量(t)	(日/橋)

- (注) 1. Dは管理橋1橋当り標準運転日数(日/橋), xは管理橋1橋当りの据付質量(t)である。
 - 2. 据付質量とは、製作質量に部品等の質量を加えた総質量である。
 - 3. ラフテレーンクレーンの標準運転日数は、管理橋のみの据付けに伴う運転日数であり、施工条件により仮設足場等の設営する作業に伴う運転日数は別途積上げるものとする。
 - 4. ラフテレーンクレーンの標準運転日数には、現場までの回送時間は含まれていない。

(2) 操作管理橋電気溶接機標準運転日数

操作管理橋(区分A)の溶接機の運転日数等は、表-3を標準とする。

表-3 電気溶接機標準運転日数

機械器具名					所要量	摘	要
雷	気	溶	接	機	D=1 ∃	管理橋,	橋長:8m未満
电	׾	俗	1女	7次	D=2 ∃	管理橋,	橋長:8m以上

- (注) 1. Dは管理橋1橋当り標準運転日数(日/橋)である。
 - 2. 電気溶接機の標準運転日数は、管理橋のみの据付けに伴う運転日数である。
 - 3. 電気溶接機の運転日当りの標準運転時間は,5時間とする。

第 19 章 塗装

1 適用範囲

この基準は、機械設備の工場塗装、工場塗替塗装、現場塗装、現場塗替塗装に適用する。

2 工場塗装

2-1 工場塗装歩掛

工場塗装歩掛は、表-19・1を標準とする。

表-19・1 工場塗装標準歩掛

(100m2 当り)

名 称	単位	数量	備考
素地調整費	式		2-2 (表-19・2, 19・3) による
橋りょう塗装工	人		2-5 (表-19・5) による
ペイント	kg		1回当りのペイント使用量×塗装回数
希 釈 剤	"		2-4 (表-19・4) による
計			

2-2 工場素地調整

(1) 工場素地調整程度

工場素地調整の程度及び使用用具は、表-19・2のとおりとする。

表-19・2 工場素地調整の程度及び使用用具

素地調整の程度		素地調整面の状態	主要器具
原板ブラスト		加工前に表面処理し、その後プライマー処理を行う	ブラスト機
1種	製品ブラスト	ミルスケール、錆等を完全に除去し、清浄な金属板とする	ブラスト機

(2) 工場素地調整歩掛

工場素地調整歩掛は、表-19・3を標準とする。

表-19·3 工場素地調整歩掛 (100m2 当り)

素地調整程度項目	1 種 (製品ブラスト)
研 削 材 料	ショット 60kg
橋りょう塗装工	5.5人

2-3 ペイント使用量

ペイント使用量は、使用する塗料を適切に積上げるものとする。

2-4 希釈剤使用量

塗料類の希釈剤使用量(質量)は、表-19・4を標準とする。

表-19・4 希釈剤使用量

区 分	エアレススプレー塗り	は け 塗 り
ペイント用及びプライマー用	ペイント使用量×9%	ペイント使用量×9%
ミストコート用	ペイント使用量×50%	ペイント使用量×50%

- (注) 1. 希釈剤の比重は, 0.85とする。
 - 2. 希釈剤使用率には、使用機器の洗浄用希釈剤を含む。

2-5 工場塗装工歩掛

工場塗装工歩掛は、表-19・5を標準とする。

表-19.5 工場塗装工標準歩掛

(人/100m2/回)

作 業 区 分	適用範囲	橋りょう塗装工	摘要
プライマー処理	${ m x}$ ${<}60$ m2	48. 53 x $^{-0.855}$	
7 7 1 1 2 2	$x \ge 60m2$	1.4	
エアレススプレー途り	${ m x}$ $<$ 60m2	48. 53 x $^{-0.855}$	x:施工面積(m2)
エクレスハクレー型り	x ≧60m2	1.4	
は け 塗 り	全面積	2. 1	

- (注) 1. 工場塗装は、エアレススプレー塗りを標準とするが、設備の形状等により、はけ塗りとしてよいものとする。
 - 2. 鋳物類は、プライマー処理を行わないのことを標準とする。
 - 3. 各層の標準膜厚を確保するための塗装回数は、基準の解説 表-1(注)3.に基づき 必要分計上するものとする。
 - 4. x は扉体,戸当り,開閉装置,主ポンプ,主配管,除塵機本体,搬送設備,貯留設備,昇降台車,巻上げ装置,管理橋,階段,手摺,架台,スクリーン等の各構成における単数(1門,1門分,1基,1台,1条,1橋,1式)当りの1層の施工面積(m2)とする。なお,各層で施工面積が異なる場合は、上塗り側の面積によるものとする。
 - 5. 「第 18 章 鋼製付属設備」の区分 C, D に相当する構造物は, 単数の単位を「1 式」とする。
 - 6. 本歩掛は、小数点以下第2位を四捨五入して第1位止めとする。

3 現場塗装

3-1 現場塗装歩掛

現場塗装歩掛は、表-19・6を標準とする。

表-19・6 現場塗装標準歩掛

(100m2 当り)

名 称	単位	数量	備考
素地調整費	式		3-3 (表-19・9, 19・10, 19・11) による
橋りょう塗装工	人		3-2 (表-19・7, 19・8) による
ペイント	kg		1回当りのペイント使用量×塗装回数
希 釈 剤	"		2-4 (表-19・4) による
諸 雑 費	式		3-4 (表-19・12) による
計			

3-2 現場塗装工歩掛

(1) 現場塗装工歩掛

現場塗装工歩掛は、表-19・7を標準とする。

表-19.7 現場塗装工標準歩掛

(人/100m2/回)

作 業 区 分	適用範囲	橋りょう塗装工	摘要
プライマー処理	${ m x}$ $<$ 60m2	48. 53 x $^{-0.855}$	
<i>人</i> 人名 文 · 是 E	x ≧60m2	1.4	
エアレススプレー塗り	${ m x}$ ${<}60{ m m}2$	48. 53 x $^{-0.855}$	x:施工面積(m2)
エテレスステレー盛り	x ≧60m2	1.4	
は け 塗 り	全面積	2. 1	

- (注) 1. 準備・後片付け・補修工数は、標準歩掛に含まれているので計上しないものとする。
 - 2. 現場塗装は、はけ塗りを標準とするが、現場条件、設備の形状等によりエアレススプレー塗りとすることが出来る。
 - 3. 各層の標準膜厚を確保するための塗装回数は、基準の解説 表-1(注)3.に基づき 必要分計上するものとする。
 - 4. x は扉体、戸当り、開閉装置、主ポンプ、主配管、除塵機本体、搬送設備、貯留設備、昇降台車、巻上げ装置、管理橋、階段、手摺、架台、スクリーン等の各構成における単数(1門、1門分、1基、1台、1条、1橋、1式)当りの1層の施工面積(m2)とする。なお、各層で施工面積が異なる場合は、上塗り側の面積によるものとする。
 - 5. 「第 18 章 鋼製付属設備」の区分 C, D に相当する構造物は、単数の単位を「1 式」とする。
 - 6. 本歩掛は、小数点以下第2位を四捨五入して第1位止めとする。

(2) 歩掛補正

表-19・7に示す現場塗装工標準歩掛は、作業条件に応じて次式により補正するものとする。

現場塗装工歩掛(人/100m2/回)

=現場塗装工標準歩掛(人/100m2/回)×(1+現場塗装工補正率)

現場塗装工補正率は、表-19・8のとおりとする。

表-19・8 現場塗装工補正率

	区		分		プライマー処理,エアレススプレー塗り,はけ塗り
密	閉	部	内	部	0.5

3-3 現場塗替素地調整

(1) 現場塗替素地調整程度

現場塗替素地調整の程度及び使用用具は、表-19・9のとおりとする。

表-19・9 現場塗替素地調整の程度及び使用用具

素地調整の程度	素地調整面の状態	主要器具
1種	塗膜, さび, その他付着物を十分に除去し, 清浄な金属面とする。	ブラスト機
2 種	塗膜、さび、その他付着物を除去し、金属面を露出させる。	ディスクサンダ
3 種 A	塗膜の活膜部は残すが、それ以外の塗膜不良部(われ、ふくれ、はがれ等)、さび、その他付着物を除去する。活膜部については、表面清掃と目粗しを行う。 3 種のなかでも旧塗膜の劣化程度がひどく全面積に対し、おおむね錆が15~30%及びふくれ、われ、はがれが30%以上発生したものであり、一般的には点錆がかなり点在している状態のものをいう。	
3 種 B	塗膜の活膜部は残すが、それ以外の塗膜不良部(われ、ふくれ、はがれ等)、さび、その他付着物を除去する。活膜部については、表面清掃と目粗しを行う。 3 種 A と 3 種 C の中間的なもので、旧塗膜の劣化程度は、全面積に対し、おおむね錆が $5\sim15\%$ 及びふくれ、われ、はがれが $5\sim30\%$ 程度発生したものであり、一般的には点錆が少し点在している状態のもの。	ディスクサンダ
塗膜の活膜部は残すが、それ以外の塗膜不良部(われ、ふくれ、がれ等)、さび、その他付着物を除去する。活膜部については、表清掃と目粗しを行う。 3 種のなかでも旧塗膜の劣化程度は少なく全面積に対し、おおむ錆が5%以下、及びふくれ、われ、はがれが0~30%程度発生したのであり、一般的には、点錆がほんの少し点在している状態のも		
4 種	塗膜表面の劣化物, その他付着物を除去し, 目粗しを行う。	

(2) 現場塗替素地調整歩掛

現場塗替素地調整歩掛は、表-19・10を標準とする。

表-19·10 現場塗替素地調整装標準歩掛

(100m2 当り)

录	地調整				3種			
項目	の程度	1種	2種	A	В	С	4種	備考
研削相	才料	フェロニッケルスラグ 3, 600kg	_		-			
橋りょう	金装工	7.0人	※ 1	4.2人	3.6人	3.1人	1.9人	
諸 雑	費	一式	一式	一式	一式	一式	一式	3-4 (表-19・12による

- (注) 1. 3種については、タッチアップ作業を含むものとする。
 - 2. 1種及び4種については、タッチアップ作業を含まないものとする。
 - 3. 準備・後片付けは、標準歩掛に含まれているので計上しないものとする。
 - 4. ※1:2種の労務は、処分に伴う集積も含めて別途積上げるものとする。

(3) 歩掛補正

表-19・10 に示す現場塗替素地調整標準歩掛は,作業条件に応じて次式により補正するものとする。

現場塗替素地調整歩掛(人/100m2)=

現場塗替素地調整標準歩掛(人/100m2) × (1+現場塗替素地調整補正率)

現場塗替素地調整補正率は、表-19・11のとおりとする。

表-19・11 現場塗替素地調整補正率

種別	種別 1種		3 種			4 種
割増条件	1 1里	2 種	A	В	С	4 1里
密閉部内部	% 1		1.0			

(注)※1:1種及び2種の現場塗替素地調整補正率については別途考慮するものとする。

3-4 諸雑費

諸雑費の計上は, 次式による。

諸雑費=橋りょう塗装工労務費×諸雑費率

諸雑費率は、表-19·12を標準とする。

表-19・12 諸雑費率

(%)

	区分			現 場 塗 装	現場塗替素地調整			
			71		プライマー・エアレススプレー・はけ	1種	2種	3種・4種
開		放		部	5	38	※ 1	5
密	閉	部	内	部	8	※ 1	※ 1	7

- (注) 1. 現場塗装の諸雑費には、工器具(エアレススプレー機、発動発電機、はけ等及び密 閉部内作業の送風機、照明設備等)の損料を含む。
 - 2. 現場塗替素地調整の諸雑費にはブラスト機,発動発電機,空気圧縮機,ディスクサンダ,密閉部内作業の送風機,照明設備の損料を含む。
 - 3. ※1:1種(密閉部内部),2種の諸雑費については、別途積上げるものとする。
 - 4. 現場塗装及び現場塗替素地調整の諸雑費に足場工、シート張防護工、板張防護工は含まれないため、別途仮設工において積上げるものとする。

3-5 現場水洗い清掃

現場塗装及び現場塗替塗装前の水洗い清掃に適用する。

(1) 対象範囲

水門設備の扉体外面及び扉体内面の塗装施工箇所を対象とする。 なお、塩分濃度測定については別途積上げるものとする。

(2) 水洗い清掃歩掛

水洗い清掃歩掛は、表-19・13を標準とする。

表-19·13 水洗い清掃標準歩掛 (水洗い清掃面積 100m2 当り)

	名 君	沵	単位	数量	備考
労	務	費	式		表-19・14による
諸	雑	費	"		労務費の 7%以内
	計				

- (注) 1. 諸雑費は、高圧洗浄機・発動発電機等の機械を含む。
 - 2. 水洗い清掃は、素地調整前の1回のみ計上する。
 - 3. 準備・後片付けは標準歩掛に含まれているので計上しないものとする。

表-19・14 水洗い清掃工歩掛 (人/100m2)

作業区分	普通作業員	備考
水洗い清掃	1.2	

(注) 計上する面積は、水洗い清掃面積 (m2) とする。

3-6 現場素地調整研削材料処分費

現場塗替素地調整における研削材料の処分に適用する。

現場塗替素地調整に使用した研削材料の処分は、産業廃棄物処理を行うものとする。

(1)素地調整研削材料処分費

素地調整研削材料処分費の積算は、次式による。

素地調整研削材料処分費=素地調整研削材料処分量×処分単価+運搬費

- 1. 運搬費は、現場から処分場までの費用を積上げるものとする。
- 2. 処分する研削材料の集積に要する費用は、素地調整歩掛に含まれる。
- 3. 処分単価は、各地区の単価を採用する。

(2)素地調整研削材料処分量

素地調整研削材料処分量は、次式による。

素地調整研削材料処分量=素地調整研削材料使用量×処分率

素地調整研削材料処分率は、表-19・15を標準とする。

表-19・15 処分率 (%)

処分材料	処 分 率
素地調整研削材料	80

(注) 処分率は現場作業における研削材料の飛散等を除いたものである。

基準の解説

1 ペイント使用量

ペイント使用量は、表-1を標準とする。

表**-1** ペイント標準使用量 [上段:標準使用量 (kg/100m2/層),下段:標準膜厚 (μm/層)]

W 14	エア	レススプレー	一塗り		はけ塗り		
塗 装 名	下塗	中塗	上塗	下塗	中塗	上塗	
エポキシ樹脂塗料(水中部用)	50	_	_	38	_	_	
エルイン側	100		_	100	_	_	
エポキシ樹脂塗料(大気部用)	40	_	_	31	_	_	
エかイン樹脂室科 (八叉両角)	80	_	_	80	_	_	
エポキシ樹脂塗料	_	22	20	_	18	17	
- かれン個加型村	_	40	40	_	40	40	
変性エポキシ樹脂塗料(水中部用)	50	_	_	40	_	_	
及は一が「フ 協加室内 (水下印/II)	100	_	_	100	_	_	
変性エポキシ樹脂塗料(大気部用)	30	_	_	24	_	_	
及压一4.10烟油至杆(八八四/II)	60	_	_	60	_	_	
長油性フタル酸樹脂塗料	_	16	14	_	12	11	
大国 生 / / /	_	30	25	_	30	25	
ポリウレタン樹脂塗料	_	22	17	_	18	14	
V.フラ・フ ▼ 18/加重打	_	40	30	_	40	30	
ふっ素樹脂塗料	_	22	17	_	18	14	
3 2 外国加里门	_	40	30	_	40	30	
エポキシ M10 塗料	_	35	_	_	27	_	
	_	60	_	_	60	_	
アルミニウム	_		12			9	
	_	_	20	_	_	20	
有機ジンクリッチペイント	65			50			
	75	_	_	75	_	_	
無機ジンクリッチペイント	65	_	_	50	_		
	75	_	_	75	_	_	
有機ジンクリッチプライマ		20		15			
		15			15		
無機ジンクリッチプライマ		20			15		
		15			15		
長曝型エッチングプライマ	14			11			
	1.0	15		10	15		
ミストコート(エポキシ樹脂)	16	ļ <u>-</u>		12	 		
	_	_	_	_	_	_	

- (注) 1. 上表の数値は、塗装作業中に飛散したものや、残余塗料で使用不能等になった塗料 のロス分を含む。
 - 2. 変性エポキシ樹脂塗料(大気部用),ポリウレタン樹脂塗料,ふっ素樹脂塗料には、 弱溶剤形塗料を含む。
 - 3. 各層の標準膜厚を確保するための塗装回数について,エポキシ樹脂塗料(水中部用), 変性エポキシ樹脂塗料(水中部用),有機ジンクリッチペイント及び無機ジンクリッチ ペイントのはけ塗りについては2回,その他の塗装方法及び塗装仕様については1回 とする。

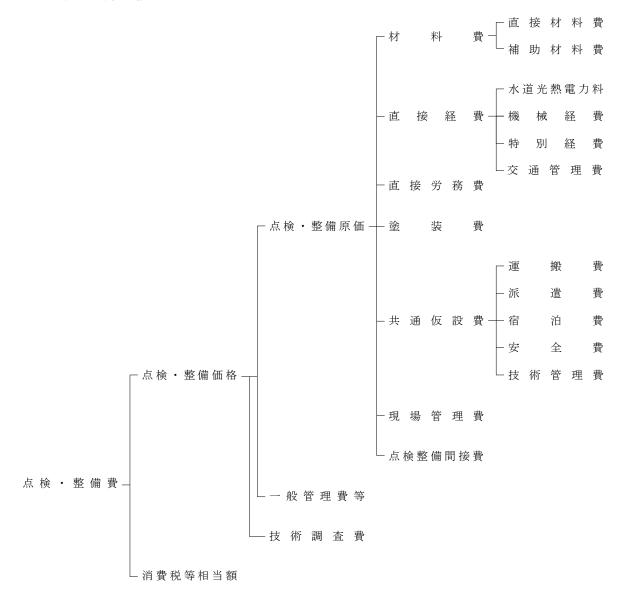
2 1種原板ブラストによる素地調整

1種原板ブラストによる素地調整は、工場管理費が含まれていない単価とする。

第20章 機械設備点検・整備業務

① 一般共通

1 適用範囲


この基準は、岡山県の治水事業、道路事業等における機械設備のうち水門設備、揚排水ポンプ設備、トンネル換気設備・非常用施設、消融雪設備、道路排水設備等の点検・整備費積算に適用する。

ここでいう点検・整備とは、点検要領等に基づいて、機械設備の装置・機器の回転数、寸法、温度、異音等を目視、聴診、触診、計測・測定、管理運転等により異常、損傷の有無、点検要領等で定められている管理値との比較、分析*を行い、点検表(記録)にとりまとめ、さらに今後の維持管理に資するための考察を行うものである。(※オイル等の簡易的な分析等)

また、上記設備の点検と同時に行う小規模な修理や整備及び機能保持のための定期整備は、この基準によるものとし、それ以外の修理や整備(OH等)及び改造に伴う部材、部品、機器単体品等の取替は、「第 IX編 機械設備」の第 1 章~19 章によるものとする。

なお、小規模な修理や整備及び機能保持のための定期整備とは、設備(又は施設)の機能保持のために 定期的に、又は点検結果に基づき実施する調整、給油脂、部品交換などの作業及びその整備記録作成まで の一連の作業をいう。

2 点検・整備費の構成

3 点検・整備費の費目

点検・整備に係る積算の各費目は、次のとおりとする。

3-1 点検・整備原価

(1) 材料費

1) 直接材料費

設備の点検・整備に際して直接消費され、原則として設備の基本的実体となって再現される材料及び部品の費用である。

(部品の例)

潤滑油,作動油,各種軸受 (ベアリング,ピローユニット等),水密ゴム,オイルシール,各種ストレーナ,各種スイッチ,各種リレー,軸継手,チェーン,スプロケット,ボルト・ナット,弁及び管継手等

2) 補助材料費

設備の点検・整備に際して補助的に消費され、作業過程において多くは消滅し、原則として設備の基本的実体となって再現されない材料の費用である。

(補助材料の例)

接着材料,ハンダ,油脂類(洗浄油,雑油等で潤滑油及び作動油を除く。 ただし,軸受給油等の少量の油脂類は含む。),くぎ,ウェス, サンドペーパ,筆塗程度の塗料等。

(2) 直接経費

点検・整備を実施するために必要な水道光熱電力料、機械経費、特別経費に要する費用である。

1) 水道光熱電力料

点検・整備を実施するために必要とする電力料等である。

2) 機械経費

設備の点検・整備を実施するために必要とする機械器具の経費で、機械損料、運転経費及び仮設材の損料の合計額である。

3) 特別経費

点検・整備に係る材料分析等に必要とする特別費用である。

4) 交通管理費

設備の点検・整備を実施するために必要とする交通管理等に要する費用である。

(3) 直接労務費

点検・整備に直接従事する作業者に対して支払われる賃金である。

(直接工の例) 点検整備工, 普通作業員等

点検整備工……直接点検・整備に従事する工員

普通作業員等…設備周辺の除草、排泥、清掃等を行う現地採用の作業員

(4) 塗装費

点検・整備に伴う部分的な補修塗装に要する費用である。

(5) 共通仮設費

1) 運搬費

点検・整備に使用する機械器具、仮設材(足場等)の運搬及び現場内における器材の運搬に要する費用である。

2) 派遣費

点検整備工を派遣する会社の所在地から現場までの派遣に要する費用で、旅費及び日当、宿泊 費、賃金、間接費である。

3) 宿泊費

点検整備工の現地での作業期間における宿泊に要する費用である。

4) 安全費

当該業務の安全施工に必要な安全管理及び安全施設等に要する費用である。

5) 技術管理費

点検・整備記録、報告書等の技術管理上必要な資料の作成及び打合せ等に要する費用である。

(6) 現場管理費

点検・整備に当って、現場を管理するために必要な経費である。

「現場管理費」の項目は、現地採用の作業員の労務管理費,法定福利費,作業員の安全訓練費,工場・発注者・本支店への電話料,郵便料等,点検・整備に直接使用しない水道光熱電力料,保険料,現場での交際費,雑費等

(7) 点検整備間接費

点検整備工を派遣する会社の点検整備部門を管理運営するために要する費用である。

「点検整備間接費」の項目は、間接工・管理業務者(管理技術者を含む)の給料、賞与及び諸 手当、法定福利費、退職金、旅費交通費、会議費、交際費、福利厚生費、動力用水光熱費、印 刷製本費、教育訓練費、図書費、不動産賃借料、保険料、租税公課、事務用品費、雑費等

3-2 一般管理費等

「一般管理費(企業全体の管理運営及び財務処理等のために要する費用)」及び「付加利益」である。

「一般管理費」の項目は、役員給与、従業員の給料、賞与及び諸手当、法定福利費、福利厚生費、退職金、修繕維持費、事務用品費、通信交通費、交際費、不動産賃借料、保険料、減価償却費、動力用水光熱費、調査研究費、寄附金、租税公課、広告宣伝費、契約保証費、雑費等「付加利益」の項目は、法人税、都道府県民税、市町村民税、株主配当金、役員賞与、内部留保金、支払利息割引料、支払保証料、その他営業外費用等

3-3 技術調査費

点検・整備に関して高度な技術的調査,対策の立案等に要する特別な費用であり、旅費,日当, 宿泊費,賃金,間接費,一般管理費等である。

3-4 消費税等相当額

消費税等相当額は、消費税及び地方消費税相当分の費用である。

4 点検・整備費の積算

点検・整備に係る各費目の積算は、次のとおりとする。

4-1 点検・整備原価

- (1) 材料費
 - 1) 直接材料費
 - (イ) 直接材料費の積算は、(所要量) × (単価) とする。
 - (ロ) 所要量の算定は、積上げによるものとする。
 - (ハ) 単価は、「建設物価」、「積算資料」、見積価格、実績価格等の資料により決定するものとする。なお、統一単価を定めているものについては、それを適用するものとする。
 - 2) 補助材料費
 - (イ) 補助材料費の積算は、(点検整備工費)×(補助材料費率)とする。
 - (ロ) 点検整備工費とは、直接労務費中の現地採用の普通作業員等を除く点検整備工に対する労 務費とする。
 - (ハ) 補助材料費率は、表-20・1 のとおりとする。

表-20・1 補助材料費率

(%)

	機械設	備名	補助材料費率	
	河川用水門・	鋼製ゲート	4	
河川用水門設備	堰 設 備	ゴム引布製起伏ゲート	4	
	樋門樋管ゲート		3	
ダム用水門設	ダム用水門設備			
揚排水ポンプ	揚排水ポンプ設備			
トンネル	送 (排) 風機	2		
換気設備	ジェットファン	2		
非常用施設	非常用施設			
道路排水設備	2			
消雪設備			2	

(2) 直接経費

- 1) 直接経費の積算は, [(点検整備工費) × (直接経費率) + (積上げ積算による直接経費)] とする。
- 2) 直接経費率による直接経費は、次のとおりとする。
 - (イ) 基地又は宿泊地から現場間の移動等に要する連絡車等。
 - (ロ) 点検・整備に必要な各種計測機器。
- 3) 直接経費率は、表-20・2によるものとする。
- 4) 積上げによる直接経費は、次のとおりとし必要額を適正に積上げるものとする。
 - (イ) 高所作業車,発動発電機(排出ガス対策型),洗浄機等の損料等,及び仮設材(足場等)の 損料等とする。
 - (ロ) 水道光熱電力料及び特別経費。
 - (ハ) 個々の費目別に見積書,実績価格,標準料金等の資料により決定するものとする。なお,機械経費は,「請負工事機械経費積算要領」又は「建設機械等賃料積算基準」等によるものとする。
 - (二) 交通誘導警備員及び機械の誘導員等の交通管理に要する費用。

表-20・2 直接経費率

	機械設	備名	直接経費率		
	河川用水門・	鋼製ゲート	8		
河 川 用水門設備	堰 設 備	ゴム引布製起伏ゲート	8		
	樋門樋管ゲート		10		
ダム用水門設	ダム用水門設備				
揚排水ポンプ	揚排水ポンプ設備				
トンネル	送 (排) 風機	15			
換気設備	ジェットファン	15			
非常用施設			14		
道路排水設備	道路排水設備				
消雪設備	井戸・取水施設	4			
旧 当 议 佣	散水配管		23		

(3) 直接労務費

- 1) 直接労務費の積算は、(工数) × (賃金) とする。
- 2) 工数は機械設備毎の各章によるものとする。
- 3) 点検整備工の賃金は、大臣官房参事官(イノベーション)が別に定める機械設備据付工の日当り賃金とする。

普通作業員の賃金は、「公共工事設計労務単価」を適用する。

- 4) 各賃金は、次の各項の補正を行うものとする。
 - (イ) 積雪寒冷地(豪雪地帯対策特別措置法「昭和37年法律第73号」第2条第1項に定められた地域)における冬季屋外作業の場合は、必要に応じて労務単価又は歩掛の補正をするものとする。

(4) 塗装費

- 1) 塗装の積算は、(塗装面積) × (1m² 当りの単価) とする。
- 2) 塗装面積の算定は、積上げによるものとする。ただし、実績等により塗装面積の明らかなものはそれによってもよいものとする。
- 3) 塗装面積 $1m^2$ 当りの単価は,積上げ又は見積価格,実績価格等の資料により決定するものとする。

(5) 共通仮設費

- 1) 共通仮設費の積算は、率計算による額と積上げ積算による額とを加算して算定するものとする。
- 2) 率計算による積算は、次に示す対象額に率を乗じて得た額とする。

対 象 額 = 直接点検・整備費+ (無償貸付機械等評価額+支給品費)

共通仮設費(率分) = 対象額×共通仮設費率

ただし、共通仮設費率は、表-20・3によるものとする。

直接点検・整備費とは、「材料費」、「直接経費」、「直接労務費」、「塗装費」とし、無償貸付機械等評価額及び支給品費は、「直接点検・整備費」に含まれるものを対象とする。

3) 複数種の設備を1件の点検整備業務で発注する場合の共通仮設費率は、設備毎の共通仮設費率を採用し、設備毎の共通仮設費(率分)を単純合算するものとする。

	機械設	備名	共通仮設費率
	河川用水門·	鋼製ゲート	19
河川用水門設備	堰 設 備	ゴム引布製起伏ゲート	19
	樋門樋管ゲート	20	
ダム用水門設	23		
揚排水ポンプ設備			21
トンネル	送 (排) 風機	16	
換 気 設 備 ジェットファン			39
非常用施設	27		
道路排水設備			35

4) 運搬費

運搬費については共通仮設費率に含まれていないので、必要に応じて積上げ等により積算する ものとする。

5) 派遣費

- (イ) 派遣費については共通仮設費率に含まれていないので、点検整備工の旅行日における旅費、 日当、宿泊費、賃金、点検整備間接費を積上げるものとする。
- (ロ) 旅費,日当,宿泊費は「岡山県職員等の旅費に関する条例」の旅館に宿泊する場合の2級 相当額を標準とする。
- (ハ) 賃金は、「3-1(3)直接労務費」によるものとする。
- (二) 点検整備間接費は、(賃金) × (点検整備間接費率) とし、点検整備間接費率は、表-20・5のとおりとする。

6) 宿泊費

宿泊費については、共通仮設費率に含まれていないので、現地での作業開始日から終了日までの作業期間における宿泊費を必要に応じて積上げるものとする。この場合の費用算定は、「岡山県職員等の旅費に関する条例」の旅館に宿泊する場合によるものとし、点検整備工は2級相当額を標準とする。ただし宿泊費は直接労務費中の点検整備工にのみ計上し、公共工事設計労務単価を適用する普通作業員等は、現地採用とし、計上しないものとする。

なお、宿泊費は現場管理費及び一般管理費等の算定の対象とする。

7) 安全費

- (イ) 共通仮設費率に含まれる安全費は、次のとおりとする。
 - a 現場内全般の安全管理上の監視,あるいは連絡等に要する費用。
 - b 保安帽, 命綱, 救命胴衣, 耳栓等の安全用品の費用。
 - c 安全委員会等に要する費用。
 - d 交通規制を伴わない標示板,標識,保安燈,防護柵,バリケード,照明等の安全施設類の 設置,撤去,補修に要する費用及び使用期間中の損料。
- (ロ) 積上げによる安全費は、次のとおりとし、現場状況を適確に把握し必要額を適正に積上げるものとする。

なお、積上げ計上した場合は、特記仕様書に明示するものとする。

- a 夜間作業を行う場合における照明に要する費用。
- b 酸素欠乏症の予防に要する費用。
- c 粉塵作業の予防に要する費用。
- d 高圧作業の予防に要する費用。

- e 交通規制に伴い必要となる安全施設類の設置・撤去・補修に要する費用。
- f バリケード, 転落防止柵, 工事標識, 照明等のイメージアップに要する費用。
- g その他現場条件等により積上げを要する費用。

8) 技術管理費

- (イ) 共通仮設費率に含まれる技術管理費は、次のとおりとする。
 - a 点検・整備における工程管理に要する費用。
 - b 点検・整備における出来形管理に要する費用。
 - c 点検・整備における点検結果報告の確認等に必要な写真管理に要する費用。
 - d 点検・整備における報告書作成及び打合せに要する費用。
 - e 情報共有システムに係る費用(登録料及び利用料)
 - f その他点検・整備の実施に際し、必要な資料の作成に要する費用。
- (ロ) 積上げ積算による技術管理費は、必要額を適正に積上げるものとする。なお、積上げ計上 した場合は、特記仕様書に明示するものとする。

(6) 現場管理費

- 1) 現場管理費の積算は、(純点検・整備費) × (現場管理費率) とする。
- 2) 純点検・整備費とは、〔材料費+直接経費+直接労務費+塗装費+共通仮設費(派遣費を除く)〕 とする。
- 3) 現場管理費率は、表-20・4によるものとする。

表-20・4 現場管理費率

純点検・整備費	現 場 管 理 費 率			
300 万円以下	20. 21%			
300 万円を超えるもの	J=51.89N ^{-0.06322} J:現場管理費率(%) N:純点検・整備費(円)			

(注) Jは、小数第3位を四捨五入して、第2位とする。

(7) 点検整備間接費

- 1) 点検整備間接費の積算は、(点検整備工費) × (点検整備間接費率) とする。
- 2) 点検整備間接費率は、表-20・5のとおりとする。
- 3) 複数種の設備を1件の点検整備業務で発注する場合の点検整備間接費率は、設備毎の点検整備間接費率を採用し、設備毎の点検整備間接費を単純合算するものとする。

表-20・5 点検整備間接費率 (%)

	機械設	備名	点検整備間接費率
河川用水門設備	河川用水門· 堰 設 備	鋼製ゲート	110
		ゴム引布製起伏ゲート	110
	樋門樋管ゲート		100
ダム用水門設備			110
揚排水ポンプ設備			160
トンネル換気設備・トンネル非常用施設			160
道路排水設備			100

4-2 一般管理費等

- (1) 一般管理費等の積算は, (点検・整備原価)×(一般管理費等率)とする。
 - 1) 標準一般管理費等率は、表-20・6によるものとする。

表-20・6 標準一般管理費等率(前払金のない場合)

点検・整備原価	標準一般管理費等率
50 万円以下	25. 55%
50 万円を超えるもの	G=-0.7402 Log (C)+29.76 G:標準一般管理費等率(%) C:点検・整備原価(円)

(注) Gの値は、小数第3位を四捨五入して、第2位とする。

4-3 技術調査費

技術調査に従事する技術員の旅費、日当、宿泊費、賃金、間接費、一般管理費等の積算は次により積上げるものとする。

- (1) 旅費、日当、宿泊費は、「岡山県職員等の旅費に関する条例」の旅館に宿泊する場合の3級相当額によるものとする。
- (2) 技術員の賃金は、点検整備工の賃金に準ずるものとする。
- (3) 間接費は、「4-1(7)点検整備間接費」に準ずるものとする。
- (4) 一般管理費等は、「4-2 一般管理費等」に準ずるものとする。

4-4 消費税等相当額

消費税等相当額は、点検・整備価格に消費税及び地方消費税の税率を乗じて得た額とする。

4-5 支給品の取扱い

- (1) 支給品とは、設備の点検・整備に際して別途契約により取得した材料等を受注者に支給するものをいう。
- (2) 支給品の現場管理費に対する取扱いは、次による。
 - 1) 直接材料は、全額を現場管理費算定の対象とする。
- (3) 支給品は、一般管理費等の算定の対象としない。

4-6 各間接費等の項目別対象表

表-20・7 各間接費等の項目別対象表

	項	目		共通仮設費	現場管理費	一般管理費等
材		料	費	0	0	0
直	接	経	費	0	0	0
直	接	労 務	費	0	0	0
途		装	費	0	0	0
共	通	派 遣	費	-	×	0
仮	設費	派遣費以	外	_	0	0
現	場	管 理	費	-	-	0
点	検 整	備間接	費	_	×	0
支	給品費	直接材	料	0	0	×
無	償 貸 付	機械等評価	額	0	0	×

○:対象とする×:対象としない

基準の解説

1 端数処理

- (1) 共通仮設費の率計上の金額は、1,000円単位とし、1,000円未満は切り捨てる。
- (2) 現場管理費, 点検整備間接費の金額は, 1,000円単位とし, 1,000円未満は切り捨てる。

2 一般管理費等

一般財団法人等に委託する場合の一般管理費等は、次式により算定して得た額とする。

一般管理費等= (点検・整備原価) × (一般管理費率) × 90/100

② 水門設備

1 適用範囲

この基準は、水門設備の点検・整備に適用する。

1-1 区分及び構成

水門設備の区分及び構成は、表-20・8のとおりとする。

表-20・8 区分及び構成

	区	分	構成		
河水	河川用水門・	鋼製ゲート	扉体,戸当り,開閉装置,操作制御設備等		
川門	堰	ゴム引布製起伏ゲート	袋体, 取付金具, 起伏装置, 操作制御設備等		
用備	樋 門 椛	通 管 ゲ ー ト ート・スライドゲート)	扉体,戸当り,開閉装置,操作制御設備等		
	放 流 設 備 (主放流・非 常用放流)	ローラゲートラジアルゲート	扉体,戸当り,開閉装置,基礎材,空気管, 充水装置,操作制御設備等		
ダム		高圧スライドゲート	扉体又は弁体,ボンネット,ケーシング又は弁胴,ボンネットカバー,開閉装置,空気管,充水装置,操作制御装置等		
用水門設備	小容量放流	設備用ゲート・バルブ	扉体又は弁体,ボンネット,ケーシング又は弁胴,ボンネットカバー,開閉装置,空気管,充水装置,操作制御装置等		
7VIII	制 水 設 備		扉体,戸当り,開閉装置,基礎材,空気管, 充水装置,操作制御設備等		
	取	k 設 備	扉体,戸当り,開閉装置,整流装置,スクリーン, 取水塔,操作制御設備等		

1-2 適用規格

この基準を適用する設備の規格は、表-20・9を標準とする。

表-20・9 適用規格

	×	分		適 用 規 格
河	河川用水門・		ラ ゲ ー ト コーラゲート	開閉装置がワイヤロープウインチ式を標準とする
川用	堰	起伏	ゲ ー ト	開閉装置が油圧シリンダ式を標準とする
用水門設備		ゴム引布製	起伏ゲート	起伏方式が空気式を標準とする
備	1211	樋 管 ゲ ー ート・スライ	·	樋門・樋管に設置されたゲートで,開閉装置がスピ ンドル式又はラック式のものを標準とする
	放 流 設 備 (主放流・非 常用放流)	ローラ	油圧式	主放流又は中位放流設備を標準とする
		ゲート	ワイヤ式	クレストゲートを標準とする
		ラジアル	油圧式	主放流又は中位放流設備を標準とする
ダ		ゲート	ワイヤ式	クレストゲートを標準とする
ム用水		高圧スライドゲート		主放流又は中位放流設備を標準とする
八門設備	小容量放流	設備用ゲー	ト・バルブ	小容量放流管に付随するゲート・バルブ (主・副) とする
	制 力	k 設	備	主放流又は中位放流設備の予備・修理用ゲートで開 閉装置がワイヤロープウインチ式を標準とする
	取 力	k 設	備	選択 (表面) 取水設備で開閉装置がワイヤロープウインチ式を標準とする

2 点検・整備原価

2-1 点検工数

点検工数は、「(2) 標準点検日数」により求めた値を「(4) 形式補正」により補正し、「(1) 標準点検構成人員」を乗じたものに、必要に応じて「(5) 加算工数」及び「(6) 施設間の移動に伴う拘束工数」を加算して算出するものとする。

点検工数= (標準点検日数×形式補正) ×標準点検構成人員

+加算工数+施設間移動に伴う拘束工数

(1) 標準点検構成人員

水門設備の標準点検構成人員は、表-20・10を標準とする。

表-20・10 標準点検構成人員 (人/日)

区 分	管理運転点検	目視点検	年点検
河川用水門・堰	4	4	5
樋門樋管ゲート	4	4	4
ダム用水門	3	3	4

(2) 標準点検日数

1) 河川用水門設備(管理運転点検)

河川用水門設備の管理運転点検の標準点検日数は、表-20・11を標準とする。

	Þ	標準点検日数(日/門)						
		普通ローラゲート			Y=0.24			
	河川用水門・堰	シェル構造ローラゲート			Y=0.33			
河	何川用小门・堰	起伏ゲート			Y=0.22			
川用水		ゴム引布製起伏ゲート			Y=0.0025x+0.16			
水門設備			電動式	$x \ge 10 \text{m}^2$	Y=0.18			
備	樋門樋管ゲート	動力式	电期式	$x < 10 m^2$	Y=0.12			
	(ローラゲート・ スライドゲート)		エン	ジ ン 式	Y=0.09			
		手	動	式	Y=0.06			

表-20・11 河川用水門設備標準点検日数(管理運転点検)

- (注) 1. Y は標準点検日数 (日/門), x は1 門当り (構成毎) 扉体面積 (m²) である。標準点検日数は,小数第3位を四捨五入して,第2位とする。
 - 2. 扉体面積とは、扉体の有効幅(純径間)×有効高である。
 - 3. 標準点検日数は、点検整備工による点検を標準とする。
 - 4. 管理運転点検の内容は、可能な限りの負荷状態において運転をしながら、設備の状況確認、動作確認、原体、戸当り、開閉装置、機側操作盤の目視による外観の異常の有無、前回点検時以降の変化の有無について確認を行うことを標準とする。
 - 5. 標準点検日数の点検範囲は、上記 4. 及び準備、後片付けまでとし、以下の作業は含まないので、必要な場合は別途積上げるものとする。
 - (1) 不具合原因の高度な技術的調査・検討,設備の劣化診断,並びに修繕等の計画案 の作成。
 - (2) 潤滑油類の交換は、別途「2-2 整備工数」による。 ただし、点検時に行う軸受給油等の少量の潤滑油類の補給は、標準点検日数に含まれる。
 - (3) 点検における施設間の移動のための作業員の拘束工数は,「(6) 施設間の移動に伴う拘束工数」による。
 - 6. 樋門樋管ゲートを除く各設備の標準点検日数は、開閉装置(起伏装置)の動力が電 動機を標準とする。
 - 7. 普通ローラゲートの開閉装置がラック・スピンドル式の場合は、樋門樋管ゲートの 点検日数による。
 - 8. 起伏ゲートの開閉方式は、油圧シリンダ駆動方式とする。
 - 9. 点検日数算出に当って、ゴム引布製起伏ゲートの扉体面積は、純径間に扉体を起立させた状態の有効高を乗じた面積とする。
 - 10. 管理運転点検が出来ない場合は、目視点検として設備条件に適した内容で点検日数を算出するものとする。

2) 河川用水門設備(目視点検・年点検)

河川用水門設備の目視点検及び年点検の標準点検日数は、表-20・12を標準とする。

	'তা	分	標準点検日数 (日/門)			
	区	N	目 視 点 検	年 点 検		
		普 通	ローラ	ゲート	Y=0.24	Y = 0.0049x + 0.37
	河川田水明。恒	シェル	構造口一	ーラゲート	Y=0.33	Y = 0.0033x + 0.84
河	河川用水門・堰	起伏ゲート			Y=0.22	Y = 0.0040x + 0.40
川用		ゴム引布製起伏ゲート			Y=0.25	Y=0.0032x+0.51
水門設備		動力式	走到十	$x \ge 10 \text{m}^2$	V-0.12	Y=0.41
備	樋門樋管ゲート (ローラゲート・		電動式	$x < 10 m^2$	Y=0.13	Y=0.28
	スライドゲート)		エン	ジン式	Y=0.09	Y=0.19
		手	動	式	Y=0.06	Y=0.13

表-20・12 河川用水門設備標準点検日数 (目視点検・年点検)

- (注) 1. Y は標準点検日数 (日/門), x は1 門当り (構成毎) 扉体面積 (m²) である。標準点検日数は、小数第3位を四捨五入して、第2位とする。
 - 2. 扉体面積とは扉体の有効幅(純径間)×有効高である。
 - 3. 2 段扉の場合は、扉体の全面積を x に代入して Y を求め、表 $-20 \cdot 25$ の補正係数で補正して算出する。
 - 4. 作業区分別点検日数は、次式によるものとする。

作業区分別点検日数 (日/門) =全体日数 (日/門) ×作業区分別日数比率 (%) 作業区分別日数比率は,表-20・15~表-20・18 のとおりとする。

- 5. 標準点検日数は、点検整備工による点検を標準とする。
- 6. 目視点検は、管理運転点検が困難な設備において行うものとする。また、点検内容は、施設全般及び扉体、戸当り、開閉装置、機側操作盤を目視により、外観の異常の有無や前回点検時以降の変化の有無について確認し、確認運転は行わないことを標準とする。
- 7. 年点検の内容は、施設全般及び扉体、戸当り、開閉装置、機側操作盤を外部からの 目視及び分解を伴う内部からの目視による点検の他、点検用器具(ノギス、テストハ ンマー、メガーテスタ、マイクロメーター、シックネスゲージ、塗膜厚計、振動計等) を用いた計測、作動油の分析用サンプルの採取及び簡易な給油脂、システム全体の機 能確認を目的とした確認運転を行うことを標準とする。
- 8. 標準点検日数の点検範囲は、上記 6. 又は 7. 及び準備、後片付けまでとし、以下の作業は含まないので、必要な場合は別途積上げるものとする。
 - (1) 不具合原因の高度な技術的調査・検討,設備の劣化診断,並びに修繕等の計画案 の作成。
 - (2) 潤滑油類の交換は、別途「2-2 整備工数」による。 ただし、点検時に行う軸受給油等の少量の潤滑油類の補給は、標準点検日数に含まれる。
 - (3) 点検における施設間の移動のための作業員の拘束工数は,「(6) 施設間の移動に伴う拘束工数」による。
- 9. 樋門樋管ゲートを除く各設備の標準点検日数は、開閉装置(起伏装置)の動力が電動機を標準とする。
- 10. 普通ローラゲートが2段扉の場合は表-20・25に示す形式補正を行うものとする。
- 11. 普通ローラゲートの開閉装置がラック・スピンドル式の場合は、樋門樋管ゲートの

点検日数による。

- 12. シェル構造ローラゲートが 2 段扉の場合は表-20・25 に示す形式補正を行うものとする。
- 13. 起伏ゲートの開閉方式は、油圧シリンダ駆動方式とする。
- 14. フラップゲートの年点検日数は、樋門樋管ゲート(手動式)の歩掛×0.6、陸閘門の年点検日数は、樋門樋管ゲート(手動式)により算出出来る。
- 15. 標準点検日数算出に当って、起伏ゲート、ゴム引布製起伏ゲート及び2段ゲートの 扉体面積は、次のとおりとする。
 - (1) 起伏ゲートの扉体面積は、純径間に扉体を起立させた状態の有効高を乗じた面積とする。
 - (2) ゴム引布製起伏ゲートの扉体面積は,純径間に扉体を起立させた状態の有効高を乗じた面積とする。
 - (3) 普通ローラゲート、シェル構造ローラゲートの2段ゲートの扉体面積は、純径間に上段扉の有効高と下段扉の有効高を加算した高さを乗じた面積とする。
- 3) ダム用水門設備(管理運転点検)

ダム用水門設備の管理運転点検の標準点検日数は、表-20・13を標準とする。

	Þ	標準点検日数(日/門)		
		ローラ	油圧式	Y = 0.65
	放流 設備 (主放流・	ゲート	ワイヤ式	Y=0.36
ダ	非常用放流)	ラジアル	油圧式	Y=0.59
ム用が		ゲート	ワイヤ式	Y = 0.41
水門設	小容量放流	設備用ゲー	Y=0.35	
備	制 7.	k 部	设 備	Y=0.42
	币 水 凯 凚	円形・半円形多段式		_
	取水設備	多段式口	ーラゲート	_

表-20・13 ダム用水門設備標準点検日数(管理運転点検)

- (注) 1. Y は標準点検日数(日/門)である。
 - 2. 標準点検日数は、点検整備工による点検を標準とする。
 - 3. 管理運転点検の内容は、以下のとおりとする。
 - (1) 管理運転点検(待機系)

可能な限りの負荷状態において運転をしながら、設備の状況確認、動作確認、扉体、戸当り、開閉装置、機側操作盤の目視による外観の異常の有無、前回点検時以降の変化の有無について確認を行うことを標準とする。

(2) 管理運転点検(常用系)

設備の実運転に合せて負荷状態により、設備の状況確認、動作確認、扉体、戸当り、開閉装置、機側操作盤の目視による外観の異常の有無、前回点検時以降の変化の有無について確認を行うことを標準とする。

- 4. 標準点検日数の点検範囲は、上記3.及び準備、後片付けまでとし、以下の作業は含まないので、必要な場合は別途積上げるものとする。
 - (1) 不具合原因の高度な技術的調査・検討,設備の劣化診断,並びに修繕等の計画案 の作成。

- (2) 潤滑油類の交換は、別途「2-2 整備工数」による。 ただし、点検時に行う軸受給油等の少量の潤滑油類の補給は、標準点検日数に含まれる。
- (3) 点検における施設間の移動のための作業員の拘束工数は,「(6) 施設間の移動に伴う拘束工数」による。
- 5. 制水設備とは、主放流設備、中位放流設備に付随する修理用ゲートや流水遮断機能をもった予備ゲートをいう。
- 6. 各設備の標準点検日数は、開閉装置の動力が電動機を標準とする。
- 7. 小容量放流設備用ゲートとは、リングシールゲート、高圧スライドゲート、ジェットフローゲート、リングホロワゲートとする。
- 8. 小容量放流設備用バルブとは、ホロージェットバルブ、コーンスリーブバルブ、フィクストコーンバルブ、スルースバルブとする。
- 9. 制水ゲートは高圧ローラゲートとする。なお、高圧スライドゲート及びキャタピラ ゲートは含まない。
- 10. 制水設備の開閉装置には、ガントリークレーンを含まない。
- 11. 取水設備の点検日数には、予備ゲート又は修理用ゲートの日数は含まないので別途 加算すること。
- 12. 主放流設備の高圧スライドゲートの標準点検日数は、小容量放流設備用ゲート・バルブの標準点検日数を用いる。
- 13. 管理運転点検が出来ない場合は、目視点検として設備条件に適した内容で点検日数を算出するものとする。
- 4) ダム用水門設備(目視点検・年点検)

ダム用水門設備の目視点検及び年点検の標準点検日数は、表-20・14を標準とする。

標準点検日数 (日/門) 区 分 目視点検 年 点 検 油 圧 式 Y = 0.57Y = 0.006x + 1.84ローラ ゲート 放流設備 ワイヤ式 Y = 0.29Y = 0.004x + 1.09(主放流・ Y = 0.52Y = 0.001x + 2.00油圧式 非常用放流) ラジアル ゲート 用水門設備 ワイヤ式 Y = 0.37Y = 0.003x + 1.53小容量放流設備用ゲート・バルブ Y = 0.28Y = 0.403x + 0.56細 Y = 0.35Y = 0.011x + 1.41円形·半円形多段式 Y = 0.61Y = 0.002x + 2.47取水設備 多段式ローラゲート Y = 0.004x + 1.59Y = 0.52

表-20・14 ダム用水門設備標準点検日数 (目視点検・年点検)

(注) 1. Y は標準点検日数(日/門), x は1 門当り(構成毎)扉体面積(m²)である。

ただし、小容量放流設備用ゲート・バルブにあっては、口径 (m)、円形・半円形多段式にあっては最大口径 (m) ×全伸長 (m)、多段式ローラゲートにあっては純径間 (m) ×全伸長 (m) とする。

標準点検日数は、小数第3位を四捨五入して、第2位とする。

- 2. 扉体面積とは、扉体の有効幅(純径間)×有効高である。
- 3. 作業区分別点検日数は、次式によるものとする。

作業区分別点検日数 (日/門) =全体日数 (日/門) ×作業区分別日数比率 (%) 作業区分別日数比率は,表 $-20\cdot19$ ~表 $-20\cdot24$ のとおりとする。

- 4. 標準点検日数は、点検整備工による点検を標準とする。
- 5. 目視点検の内容は、施設全般及び扉体、戸当り、開閉装置、機側操作盤を目視により、外観の異常の有無や前回点検時以降の変化の有無について確認し、確認運転は行わないことを標準とする。
- 6. 年点検の内容は、施設全般及び扉体、戸当り、開閉装置、機側操作盤を外部からの 目視及び分解を伴う内部からの目視による点検の他、点検用器具(ノギス、テストハ ンマー、メガーテスタ、マイクロメーター、シックネスゲージ、塗膜厚計、振動計等) を用いた計測、作動油の分析用サンプルの採取及び簡易な給油脂、システム全体の機 能確認を目的とした確認運転を行うことを標準とする。
- 7. 標準点検日数の点検範囲は、上記 5. 又は 6. 及び準備、後片付けまでとし、以下の作業は含まないので、必要な場合は別途積上げるものとする。
 - (1) 不具合原因の高度な技術的調査・検討,設備の劣化診断,並びに修繕等の計画案 の作成。
 - (2) 潤滑油類の交換は、別途「2-2 整備工数」による。 ただし、点検時に行う軸受給油等の少量の潤滑油類の補給は、標準点検日数に含まれる。
 - (3) 点検における施設間の移動のための作業員の拘束工数は,「(6) 施設間の移動に伴う拘束工数」による。
- 8. 制水設備とは、主放流設備、中位放流設備に付随する修理用ゲートや流水遮断機能をもった予備ゲートをいう。
- 9. 各設備の標準点検日数は、開閉装置の動力が電動機を標準とする。
- 10. 小容量放流設備用ゲートとは、リングシールゲート、高圧スライドゲート、ジェットフローゲート、リングホロワゲートとする。
- 11. 小容量放流設備用バルブとは、ホロージェットバルブ、コーンスリーブバルブ、フィクストコーンバルブ、スルースバルブとする。
- 12. 制水ゲートは、高圧ローラゲートとする。なお高圧スライドゲート及びキャタピラゲートは含まない。
- 13. 制水設備の開閉装置には、ガントリークレーンを含まない。
- 14. 主放流設備の高圧スライドゲートの標準点検日数は、小容量放流設備用ゲート・バルブの標準点検日数を用いる。ただし、xは、下記による。
 - (1) 通水路断面が円形状の場合

x:口径(m)

- (2) 通水路断面が矩形状の場合
 - x:矩形断面積を等価な円形断面積に置換えた場合の等価口径(m)

 $x = 2 \times (B \times H / \pi)^{-1/2}$

B:純径間(m)

H:有効高(m)

(3) 作業区分別日数比率

各設備の作業区分別日数比率は、次のとおりとする。

1) 河川用水門設備(目視点検)

目視点検の作業区分別日数比率は、表-20・15、表-20・16を標準とする。

作業区分 普通ローラ シェル構造 ゴム引布製 起伏ゲート ローラゲート 起伏ゲート 構成機器名等 数量 1門分 18 13 14 16 1 門 16 12 扉体(袋体) 18 20 戸当り・固定部(取付金具) 1門分 9 7 9 14 開閉装置・油圧ユニット 38 42 52 31 (起 伏 装 置) 機側操作設備 17 20 15 19 100 100 100 100

表-20・15 河川用水門・堰設備(目視点検)作業区分別日数比率 (%)

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置・油圧ユニット(起伏装置)」 及び「機側操作設備」を別途考慮するものとする。
 - 3. 付属設備の目視による点検は、全般に含む。
 - 4. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 5. 普通ローラゲートの開閉装置がラック・スピンドル式の場合は、樋門樋管ゲートの 作業区分別日数比率による。

作 業 区	分	ローラゲート, スライドゲート				
構成機器名等	数量	電動	协式	エンジン式	T. #L ->	
件 灰 饺 砧 石 守	奴里	$x \ge 10 \text{m}^2$	$x < 10 m^2$	1	手動式	
全 般	1門分	12		25	12	
扉 体	1 門	3	31		26	
戸 当 り	1門分	1	18		18	
開閉装置	"	2	22		44	
機側操作設備	"	17		-	-	
計	"	10	0	100	100	

表-20・16 樋門樋管ゲート設備(目視点検)作業区分別日数比率 (%)

- (注) 1. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 2. 付属設備の目視による点検は、全般に含む。

2) 河川用水門設備(年点検)

年点検の作業区分別日数比率は、表-20・17、表-20・18を標準とする。

表-20・17 河川用水門・堰設備(年点検)作業区分別日数比率 (%)

作業区分	普通ローラ		起伏ゲート	ゴム引布製	
構成機器名等	数量	ゲート	ローラゲート	起バクード	起伏ゲート
全般	1門分	9	8	3	5
扉 体 (袋 体)	1 門	17	17	20	18
戸当り・固定部(取付金具)	1門分	7	6	9	10
開閉装置・油圧ユニット (起 伏 装 置)	IJ	44	47	44	37
機側操作設備	"	7	10	8	11
確 認 運 転	"	16	12	16	19
計	"	100	100	100	100

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置・油圧ユニット(起伏装置)」 及び「機側操作設備」は別途考慮するものとする。
 - 3. 確認運転は、ゲートの全開全閉運転を行うものとする。
 - 4. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 5. 付属設備の目視による点検は、全般に含む。
 - 6. 普通ローラゲートの開閉装置がラック・スピンドル式の場合は、樋門樋管ゲート の作業区分別日数比率による。

表-20・18 樋門樋管ゲート設備(年点検)作業区分別日数比率 (%)

作業区分				分	ローラゲート, スライドゲート				
抽	構成機器名等		数量	電動	协式	エンジン式	T #14		
1円	八 校	布 泊	守	数里	$x \ge 10 m^2$	$x < 10 m^2$	エンシン氏	手動式	
全			般	1 門 分	16	15	21	10	
扉			体	1 門	17	15	21	21	
戸	=	¥	ŋ	1 門 分	11	10	14	14	
開	閉	装	置	JJ	30	32	27	36	
機	側操	作設	備	JJ	9	11	ı	-	
確	認	運	転	JJ	17	17	17	19	
	1	+		IJ	100	100	100	100	

- (注) 1. 確認運転は、ゲートの全開全閉運転を行うものとする。
 - 2. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 3. 付属設備の目視による点検は、全般に含む。

3) ダム用水門設備(目視点検)

ダム用水門設備(目視点検)の作業区分別日数比率は、表-20・19~表-20・21を標準とする。

作業区分		放 流 設 備				
作来区分		ローラ	ゲート	ラジアノ	制水設備	
構成機器名等	数量	油圧式	ワイヤ式	油圧式	ワイヤ式	ワイヤ式
全 般	1門分	9	12	11	13	11
扉 体	1 門	19	24	16	23	24
戸当り・固定部	1門分	8	9	8	9	12
開閉装置・油圧ユニット	"	38	39	35	38	38
充水装置・空気管	"	8	_	8	-	-
放 流 管 · 整 流 板	"	5	_	7	-	_
機側操作設備	"	13	16	15	17	15
計	"	100	100	100	100	100

表-20・19 ダム用水門設備(目視点検)作業区分別日数比率 (%)

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置・油圧ユニット」及び「機側操作設備」は別途考慮するものとする。
 - 3. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。

	表-20・20	ダム用水門設備	(目視点検)	作業区分別日数比率(%)
	作	業 区 分	小容	ド量放流設備用ゲート・バルブ
Г				

作 業 区 分		小容量放流設備用ゲート・バルブ		
構成機器名等	数量	油圧式・スピンドル式		
全 般	1門分	12		
扉 体 · 本 体	1 門	21		
開閉装置・油圧ユニット	1 門分	35		
充水装置・空気管	II	13		
放流管・導水管	II	6		
機側操作設備	11	13		
	"	100		

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置・油圧ユニット」及び「機側操作設備」は別途考慮するものとする。
 - 3. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 4. 主放流設備の高圧スライドゲートは、小容量放流設備用ゲート・バルブの作業区分別日数比率による。

表-20・21 ダム用水門設備(目視点検)作業区分別日数比率(%)

作業区分		取 水 設 備		
構成機器名等	数量	円形・半円形 シリンダゲート	多段式 ローラゲート	
全般	1門分	12	11	
扉 体 · 本 体	1 門	12	19	
戸当り・固定部	1門分	6	9	
取水塔体・スクリーン	"	16	24	
開 閉 装 置	"	35	28	
機側操作設備	11	19	9	
計	"	100	100	

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置」及び「機側操作設備」は別途考慮するものとする。
 - 3. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 4. 扉体・本体には、取水蓋、リフティング装置を含む。
 - 5. 戸当り・固定部には、ローラレールを含む。
 - 6. 戸当り・固定部,取水塔体・スクリーン等の点検は,水中部を除く箇所の点検とする。
 - 7. 扉体・本体は、引き上げて休止状態での点検を標準とする。

4) ダム用水門設備 (年点検)

ダム用水門設備(年点検)の作業区分別日数比率は、表-20・22~表-20・24を標準とする。

放 流 設 備 作業区分 制水設備 ローラゲート ラジアルゲート 構成機器名等 油圧式 ワイヤ式 油圧式 ワイヤ式 数量 ワイヤ式 般 1門分 2 9 7 3 4 17 18 1 門 19 15 体 16 戸当り・固定部 1 門 分 8 7 5 8 6 開閉装置・油圧ユニット 39 30 36 42 31 充 水 装 置 · 空 気 管 3 放流管 • 整流板 6 3 機側操作設備 8 12 14 確 認 運 転 IJ 16 2.7 21 15 29 100 100 計 100 100 100

表-20・22 ダム用水門設備(年点検)作業区分別日数比率 (%)

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置・油圧ユニット」及び「機側操作 設備」は別途考慮するものとする。
 - 3. 確認運転は、ゲートの全開全閉運転を行うものとする。
 - 4. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。

表-20・23 ダム用水門設備(年点検)作業区分別日数比率(%)

作業区分		小容量放流設備用ゲート・バルブ
構成機器名等	数量	油圧式・スピンドル式
全 般	1門分	10
扉 体・本 体	1 門	19
開閉装置・油圧ユニット	1門分	32
充水装置・空気管	"	7
放流管・導水管	"	5
機側操作設備	"	11
確 認 運 転	"	16
計	"	100

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置・油圧ユニット」及び「機側操作設備」は別途考慮するものとする。
 - 3. 確認運転は、ゲートの全開全閉運転を行うものとする。
 - 4. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 5. 主放流設備の高圧スライドゲートは、小容量放流設備用ゲート・バルブの作業区分別日数比率による。

表-20・24 ダム用水門設備 (年点検) 作業区分別日数比率 (%)

作 業 区 分		取 水	設備
構成機器名等	数量	円形・半円形 シリンダゲート	多段式 ローラゲート
全般	1 門 分	4	5
扉 体 ・ 本 体	1 門	11	14
戸当り・固定部	1 門 分	6	6
取水塔体・スクリーン	"	10	4
開 閉 装 置	"	40	49
機側操作設備	"	9	12
確 認 運 転	"	20	10
計	11	100	100

- (注) 1. 作業区分別日数比率は、開閉装置主動力が電動機の場合である。
 - 2. 開閉装置主動力がエンジンの場合は、「開閉装置」及び「機側操作設備」は別途考慮するものとする。
 - 3. 確認運転は、ゲートの全開全閉運転を行うものとする。
 - 4. 全般とは、ゲート設備周辺の土木構造物を含めた施設全体の目視による点検及び準備・後片付けとする。
 - 5. 扉体・本体には、取水蓋、リフティング装置を含む。
 - 6. 戸当り・固定部には、ローラレールを含む。
 - 7. 戸当り・固定部,取水塔体・スクリーン等の点検は,水中部を除く箇所の点検とする。
 - 8. 扉体・本体は、引き上げて休止状態での点検を標準とする。

(4) 形式補正

点検日数は、設備の規模、設備の構成を検討し、作業区分別日数比率等を参考に補正するものと する。

1) 河川用水門設備

河川用水門設備の点検日数補正は、次を標準とする。

- (4) 扉体形式及び開閉装置形式による補正は、表-20・25による。
- (p) 各補正係数は,「2-1(3)作業区分別日数比率」の各表の作業区分の該当部分のみ補正を行うものとする。
- (ハ) 作業区分別日数の補正方法は,次による。

補正日数=標準点検日数×作業区分別日数比率×扉体・開閉装置形式補正係数

			作	普 通	シェル構造		
原	[体形]	式	構力	成機器名等	数量	ローラゲート	ローラゲート
	-3-5-7		扉体	扉体		1.0	1.0
単		扉	戸当り・固定部		1門分	1.0	1.0
平	葉		開閉装置		"	1.0	1.0
			確認運転		"	1.0	1.0
	c"	是 扉	扉体		1 門	1.2	1.2
			戸当り・固定	部	1門分	1.1	1.1
2				問即壮栗	1M1D • 1M2D	"	1.0
2	段		開閉装置	$1M2D \times 2$, $2M2D \times 2$	"	1.2	1.3
			佐 切 害 起	1M1D • 1M2D	"	1.2	_
			確認運転	1M2D×2, 2M2D×2	IJ	1.3	1.3

表-20・25 扉体・開閉装置形式補正係数 (河川用水門設備)

- (注) 1. 開閉装置主動力は,電動機とする。
 - 2. 2 段扉の場合の点検日数算出は、上下段扉全体の投影面積を x に代入して標準点検 日数を算出した後に補正係数を乗じるものとする。

(5) 加算工数

1) 河川用水門設備

河川用水門設備に付帯する設備において標準点検日数に含まれていない機器等の点検工数は、表-20・26 を標準とする。

作業区分			河川用水門・堰		樋門樋管ゲート	
機器	: 名	数量	年点検	目視点検	年点検	目視点検
水位	計	1台	0. 15	0. 11	0.09	0.03
自家発電設備	予備電源用	"	0.41	_	0.30	_
受変電設備(低圧受電)	"	0.16	_	0.08	_

表 $-20 \cdot 26$ 河川用水門設備加算工数 (人)

- (注) 1. 水位計以外の計測機器類は、別途積上げるものとする。
 - 2. 自家発電設備の区分は、次のとおりである。 予備電源用:常用は商用電源で非常時の電源供給が自家発電設備の方式とする。
 - 3. 河川用水門・堰の自家発電設備の発電容量は、250kVA までを標準とする。
 - 4. 分解,調整等を伴う詳細点検を実施する場合は、別途積上げるものとする。
 - 5. 目視点検は、管理運転点検の場合も適用出来る。

2) ダム用水門設備

ダム用水門設備に付帯する設備において標準点検日数に含まれていない機器等の点検工数は、表-20・27を標準とする。

作 業 区 分		ダム用放流設備	% > □ □ → 1, → 1, /±	小容量放流設備用	
機器名	数量	タム用放弧設備	ダム用取水設備	バルブ・ゲート	
凍結防止装置	1式	0. 18	0.18	0.04	
流 量 計	"	_	_	0.26	
水位計・濁度計	"	_	0.19	_	

表-20・27 ダム用水門設備加算工数

(人)

- (注) 1. 流量計は、小容量放流設備用ゲート・バルブに付随するものである。
 - 2. 水位計・濁度計は、取水設備に付随するものである。
 - 3. 分解,調整等を伴う詳細点検を実施する場合は、別途積上げるものとする。
- 3) 上記1),2)の記載以外の機器等は適宜積上げ加算するものとする。

(6) 施設間の移動に伴う拘束工数

複数施設を同日に点検する場合、施設間の移動に伴う作業員の拘束工数はそれぞれ次による。

1) 樋門樋管ゲート

施設間移動に伴う拘束工数 = 0.07x(人)

x:管理運転点検,目視点検,年点検のそれぞれの点検施設箇所数

2) 河川用水門・堰,ダム用水門設備 必要に応じて別途積上げるものとする。

2-2 整備工数

(1) 潤滑油類交換工数

潤滑油類交換工数は、表-20・28を標準とする。

区分	標準整備工数	摘 要	職種別構成	割合 (%)
区 万	保华登佣工数	摘要	点検整備工	普通作業員
減 速 機	y=0.004x+0.24 (人/台)	x:1台当り潤滑油量 (L/台)	85	15
動力切換装置	y=0.13 (人/台)			
ワイヤロープ	y=0.016x+0.19 (人/門)	x:1門当り ワイヤロープ長 (m/門)	100	_

表-20・28 潤滑油類交換工数

- (注) 1. 潤滑油類交換工数の適用範囲は、潤滑油類交換に伴う準備、交換作業、清掃、後片付けまでとする。
 - 2. 標準整備工数は、小数第3位を四捨五入して、第2位とする。
 - 3. 減速機の潤滑油交換作業は、ラック式開閉装置にも適用出来る。交換作業には、フラッシングは含まない。
 - 4. ワイヤロープ油の交換作業は、旧油除去及び新油塗布とし、ゲート操作を行いながらの作業を標準とする(足場等が必要な場合は、別途費用を積上げるものとする)。
 - 5. ワイヤロープ長は、ドラムの捨て巻を含む全長とする。
 - 6. 廃油等の処分費は、別途積上げるものとする。

③ 揚排水ポンプ設備

第1 揚排水ポンプ設備

1 適用範囲

この基準は、揚排水ポンプ設備の点検・整備に適用する。ただし、水中ポンプの点検・整備には適用出来ない。

1-1 区分及び構成

揚排水ポンプ設備の区分及び構成は、表-20・29を標準とする。

表-20・29 区分及び構成

	区 分	構成		
監視操作制御設備		遠隔監視操作制御設備,機場集中監視操作盤,運転支援装置,機側操作盤,補助継電器盤,系統機器盤,電動機制御盤,CCTV設備,計装設備(水位計,流量計等),警報設備 等		
主ポンプ設備	带	主ポンプ, 主配管, 吐出し弁, 逆流防止弁, 軸封水装置, 満水装置 等		
主ポンプ駆動設備	主原動機	内燃機関, 電動機, 冷却装置(冷却水ポンプ, ラジエータ, 冷却器等), 燃料ポンプ, 潤滑油ポンプ 等		
別公野/ 武 / 開	動力伝達装置	減速機、軸継手、クラッチ類(流体継手) 等		
	燃料系統	燃料貯油槽(地下,屋外,屋内タンク),燃料移送ポンプ,燃料小出槽,燃料配管・弁等		
	冷却水系統	冷却装置(管内クーラ,ラジエータ等),冷却水槽(膨張タンク,高架水槽),冷却水ポンプ(給水ポンプ等),オートストレーナ,軸封水ポンプ,冷却水配管・弁等		
系統機器	始動系統	空気圧縮機, 始動空気槽, 空気配管・弁, 蓄電池, 充電器 等		
	満水系統	真空ポンプ、補水槽、配管・弁等		
	潤滑油系統	潤滑油ポンプ, 潤滑油配管・弁 等		
	給排気系統	排気管,消音器,給気装置 等		
	自家発電設備	発電機盤,発電機 等		
電源設備	受変電設備	受電盤,変圧器盤,配電盤,コントロールセンタ等		
电你议佣	直流電源設備	直流電源盤 等		
	無停電電源設備	無停電電源盤 等		
除塵設備		スクリーン, 除塵機, 搬送設備, 貯留設備 等		
付属設備		角落し設備,クレーン設備,換気設備,照明設備,消火設備,屋内排水設備 等		

1-2 適用規格

この基準を適用するポンプの規格は、表 $-20 \cdot 30$ 、表 $-20 \cdot 31$ を標準とする。

表-20・30 適用規格 (年点検)

区 分	適 用 規 格
立軸ポンプ	ポンプ1台当りの計画吐出量が0.2m3/sから50m3/sまでを標準とする
横軸ポンプ	ポンプ1台当りの計画吐出量が0.2m³/sから10m³/sまでを標準とする

表-20・31 適用規格(管理運転点検・目視点検)

区 分	適 用 規 格
立軸・横軸ポンプ	1機場当りの計画吐出量が 5m³/s から 100m³/s までを標準とする

2 点検原価

2-1 点検工数

点検工数は、「(1)標準点検工数」により求めた値を「(3)工数補正」及び「(4)加算工数」により補正して算出するものとする。

(1) 標準点検工数

1) 年点検

揚排水ポンプ設備の年点検の点検工数は、表-20・32を標準とする。

区分	Y:標準点検工数(時間/2台分)
	年 点 検
立軸ポンプ	$Y = 971.16x^{0.07416} - 830$
横軸ポンプ	$Y = 39.29 \times 0.6003 + 120$

表-20・32 標準点検工数 (年点検)

- (注) 1. 年点検の内容は、設備を外部からの目視による点検及び分解を伴う内部の目視点検の他、点検用器具(ノギス、テストハンマー、メガーテスタ、マイクロメーター、シックネスゲージ、塗膜厚計、振動計等)を用いた計測、潤滑油分析用サンプルの採取及び簡易な給油脂、機器の単独運転、総合操作の機能確認及び調整を行うことを標準とする。
 - 2. Yは標準点検工数, xはポンプ1台当りの計画吐出量(m³/s)である。
 - 3. 標準点検工数は、主ポンプ設備が2台の場合とする。 なお、台数による補正係数は、表-20・37のとおりとする。
 - 4. 標準点検工数は、主原動機がディーゼルエンジン駆動とする。
 - 5. 標準点検工数は、点検整備工による点検とする。
 - 6. 標準点検工数の点検範囲は、施設全般の目視点検、監視操作制御設備、主ポンプ設備、主ポンプ駆動設備、系統機器設備、電源設備、除塵設備、付属設備の点検、管理運転、準備、後片付けまでとし、以下の作業は含まないので、必要な場合は別途積上げるものとする。
 - (1) 不具合原因の調査・検討,設備の劣化診断,並びに修繕等の計画案の作成
 - (2) 油脂類の交換は、「2-2 整備工数」により別途積上げるものとする。ただし、 点検時に行う軸受給油等の少量の油脂類の補給は、標準点検工数に含まれる。
 - (3) 管理運転に必要な水位確保のため、点検着手前までに行う貯水準備作業や仮設 物の設置・撤去工数
 - (4) クラッチ機能を具備しておらず,主原動機単独運転のために必要な継手類の切離し及び接続作業
 - (5) 定格出力が 2,000kW 以上のガスタービンの点検
 - (6) ボアスコープを用いたガスタービンの点検
 - (7) 燃料貯油槽(地下タンク)の点検のうち,危険物取扱者又は危険物施設保安員が 実施し,消防機関に届出を行う点検
 - (8) 消火設備の点検のうち,消防設備士が点検を実施し,消防機関に届出を行う点検
 - (9) 遠隔監視操作制御設備,運転支援装置,CCTV 設備,警報設備の点検
 - (10) 角落し設備の点検は、「(4) 加算工数」により別途積上げるものとする。
 - 7. 標準点検工数に含まれる系統機器設備は,燃料系統,冷却水系統,始動系統,満水 系統,潤滑油系統,給排気系統とする。
 - 8. 標準点検工数に含まれる監視操作制御設備は、機場集中監視操作盤、機側操作盤、

補助継電器盤、系統機器盤、電動機制御盤、計装設備(水位計、流量計等)とする。

- 9. 標準点検工数に含まれる除塵設備は、スクリーン、除塵機、搬送設備、貯留設備とする。なお、搬送設備、貯留設備が設置されていない場合でも標準点検工数を積上げるものとし、工数補正は行わない。
- 10. 標準点検工数に含まれる付属設備は、クレーン設備、換気設備、照明設備、消火設備、屋内排水設備とする。なお、クレーン設備を点検する場合は、動力が手動、電動にかかわらず標準点検工数を積上げるものとし、工数補正は行わない。
- 11. 作業区分別工数比率は、表-20・36のとおりとする。

2) 月点検(管理運転点検・目視点検)

揚排水ポンプ設備の月点検(管理運転点検・目視点検)の点検工数は、次式による。

管理運転点検・目視点検標準点検工数=標準点検日数×(標準点検構成人員×補正係数)

なお,標準点検日数は,表-20・33,表-20・34,標準点検構成人員は,表-20・35 を標準とする。

To oo Markons (Brigation)						
区分	標準点検日]数(日)				
立軸・横軸ポンプ	$x < 10 \ (m^3/s)$	$x \ge 10 \text{ (m}^3/\text{s)}$				
(主ポンプ設備:2台)	0.8	1. 3				
立軸・横軸ポンプ	$x < 20 \text{ (m}^3/\text{s)}$	$x \ge 20 \text{ (m}^3/\text{s)}$				
(主ポンプ設備:3~4台)	1	2				
立軸・横軸ポンプ	$x \le 50 \text{ (m}^3/\text{s)}$	$x > 50 \text{ (m}^3/\text{s)}$				
(主ポンプ設備:5台以上)	2	積上げ				

表-20・33 標準点検日数(管理運転点検)

表-20・34 標準点検日数(目視点検)

农 20 07 惊牛派快日级(日况派快)							
区分	標準点検日数(日)						
立軸・横軸ポンプ	$x < 10 \text{ (m}^3/\text{s)}$	$x \ge 10 \text{ (m}^3/\text{s)}$					
(主ポンプ設備:2台)	0.5	0.9					
立軸・横軸ポンプ	$x < 20 \text{ (m}^3/\text{s)}$	$x \ge 20 \text{ (m}^3/\text{s)}$					
(主ポンプ設備:3~4台)	0.7	1. 3					
立軸・横軸ポンプ	$x \le 50 \text{ (m}^3/\text{s)}$	$x > 50 \text{ (m}^3/\text{s)}$					
(主ポンプ設備:5台以上)	1. 3	積上げ					

表-20・35 標準点検構成人員(管理運転点検・目視点検)

区 分	点検構成人員(人/2台分・日)		
	管理運転点検	目視点検	
立軸・横軸ポンプ	8	6	

(注) 1. 管理運転点検の内容は、可能な限り負荷状態による運転を行いながら、目視による外観の異常の有無、施設の運転機能の確認及び前回点検時以降の変化の有無について確認を行うことを標準とする。

- 2. 目視点検の内容は、管理運転点検の実施が困難な設備において、目視による外観の異常の有無及び前回点検時以降の変化の有無について確認を行うことを標準とし、確認運転は行わない。
- 3. 標準点検日数及び構成人員は、主ポンプ設備が2台の場合とする。なお、台数による 補正係数は、表-20・38のとおりとし、ポンプ台数が1台の場合は別途積上げとする。
- 4. xは, 1機場当りの計画吐出量 (m³/s) である。
- 5. 標準点検日数及び構成人員は、主原動機がディーゼルエンジン駆動とする。なお、原動機形式による補正係数は、表-20・40のとおりとし、異なる原動機形式が混在している機場は、別途積上げとする。
- 6. 標準点検日数及び構成人員は、点検整備工による点検とする。
- 7. 点検内容等により、標準点検日数及び構成人員と実態に大きな乖離が見られる場合は、 実態に応じて積上げるものとする。
- 8. 管理運転点検には、以下の作業は含まないので、必要な場合は別途積上げるものとする。
 - ①施設全般,付属設備の目視点検。
 - なお、管理運転点検による一連の作業で点検される設備は、標準点検工数に含まれるものとする。
 - ②管理運転点検以外に行う不具合箇所や老朽箇所の目視点検。
 - ③不具合原因の検討、調査、設備診断、並びに改造案・補修案等の計画書作成
 - ④油脂類の交換は、「2-2 整備工数」により別途積上げるものとする。ただし、点 検時に行う軸受給油等の少量の油脂類の補給は、標準点検工数に含まれる。
 - ⑤確認運転に必要な水位確保のため, 点検着手前までに行う貯水準備作業や, 仮設 の設置・撤去
 - ⑥設備全体の機能や状態の把握を行うのに十分な運転時間が確保出来ない場合に行 う,管理運転点検以外の目視点検
 - ⑦クラッチ機能を具備しておらず,主原動機単独運転のために必要な継手類の切り 離し及び接続作業
 - ⑧遠隔監視操作制御設備,運転支援装置,CCTV 設備,警報設備の点検
 - ⑨角落し設備の点検は、「(4) 加算工数」により別途積上げるものとする。
- 9. 標準点検工数に含まれる系統機器設備は,燃料系統,冷却水系統,始動系統,満水系統,潤滑油系統,給排気系統とする。
- 10. 標準点検工数に含まれる監視操作制御設備は、機場集中監視操作盤、機側操作盤、補助継電器盤、系統機器盤、電動機制御盤、計装設備(水位計、流量計等)とする。
- 11. 標準点検工数に含まれる除塵設備は、スクリーン、除塵機、搬送設備、貯留設備とする。なお、搬送設備、貯留設備が設置されていない場合でも標準点検工数を積上げるものとし、工数補正は行わない。
- 12. 標準点検工数に含まれる付属設備は、クレーン設備、換気設備、照明設備、消火設備、屋内排水設備とする。なお、クレーン設備を点検する場合は、動力が手動、電動にかかわらず標準点検工数を積上げるものとし、工数補正は行わない。

(2) 作業区分別工数比率

1) 工数比率(年点検)

揚排水ポンプ設備の作業区分別工数比率は、表-20・36を標準とする。

	表-20・36 作業区分別工数比率(年点検) (%)						
	作	業 区 分			工粉以交	拉 西	
	機械名			数量	工数比率	摘要	
全			般	1 式	2		
	中 央	操作設	備	1 式	4	機場集中監視操作盤,補助継電器盤,系統機器盤,電動機制御盤	
監視操作	機側	操 作 設	備	1 式	6	機側操作盤	
制御設備	計装設備(方	水位計,流量計	等)	1 式	3		
	遠隔監視操作制 CCTV設備,	御設備,運転支援装 警報設備	養置 ,	_	-	別途積上げ	
主ポンプ	主 ポ	ン	プ	2 台	6		
設 備	主 配	管 ・ 弁	類	2 台分	4		
	主原動機	ディーゼ	ル	2 台分	29		
主ポンプ	工	ガスタービン・電	動機	2 台分	35		
駆動設備	動力伝達装置	ディーゼ	ル	2 台分	6		
	到刀口圧衣直	ガスタービン・電	動機	ı	-	主原動機に含む	
系 糸	充 機	器 設	備	1 式	6		
	自 家	発 電 設	備	1 式	8		
電 源 設 備	受 変	電 設	備	1 式	3		
	直流電源設付	備・無停電電源	設 備	1 式	1		
除	除塵 設 備			2 台分	3		
	角 落	し設	備	_	_	別途積上げ「(4) 加算工数」	
付 属	クレ	ー ン 設	備	1 式	1		
設 備	換気設備	# · 照 明 設	備	1 式	1		
	消火設備	・屋内排水割	计值	1 式	2		
確	認	運	転	2 台分	15		

(注) 1. 主配管・弁類で逆止弁,吐出し弁のうち,吐出ゲートは除くものとし,作業区分別 工数を算出した後に別途加算するものとする。

2 台分

- なお,加算工数は,「第20章 ②水門設備」参照のこと。
- 2. 主ポンプ駆動設備がガスタービン,電動機の場合は,主原動機に動力伝達装置を含

100

- 3. 系統機器設備は,燃料系統,冷却水系統,始動系統,満水系統,潤滑油系統,給排気 系統とする。
- 4. 確認運転とは、実負荷運転もしくはそれに近い状態での設備全体の総合操作の機能 確認をいう。なお、クラッチを切っての原動機単体運転や短時間のポンプ空転運転は、 機器の単独運転に含まれる。

(3) 工数補正

点検工数は、設備の規模、設備の内容を検討し、作業区分別工数比率等を参考に補正するものと する。

- 1) 各補正係数は、「(2) 作業区分別工数比率」の作業区分の該当部分のみ補正を行うものとする。
- 2) 作業区分別工数の補正方法は、次式による。

補正工数=標準点検工数×作業区分別工数比率×補正係数

3) 各工数補正は、次を標準とする。

(イ) 主ポンプ台数補正

主ポンプ台数による工数補正は、年点検は、表 $-20\cdot37$ により、管理運転点検・目視点検は、表 $-20\cdot38$ による補正を行う。

表-20・37 主ポンプ台数補正係数(年点検)

	作業	区 分			主ポンコ	プ 台 数	
	機械	名	数量	1台	2 台 (標準点検工数)	3 台以上	備考
全般			1 式	1.0	1.0	1.0	
監視操作制御設備	中 央 操 機 側 操 計装設備(水化)	作 設 備 作 設 備 立計,流量計等)		1.0	1.0	1. 0	
主ポンプ 設 備	主ポ	ン フ ・ 弁 類	2 台分	0.5	1.0	標準点検工数に対 し,1 台増える毎に 補正係数を0.5加算	
主ポンプ駆動設備	主原動機	ディーゼル ガスタービン・ 電動機 ディーゼル	2 台分	0.5	1.0	標準点検工数に対 し、1 台増える毎に 補正係数を 0.5 加算	
	動力伝達装置	ガスタービン・ 電 動 機	_	_	_	_	主原動機に含む
系 統	機器	計 設 備	1 式	1.0	1.0	1.0	
電源設備		電 設 備電 設 備・無停電電源設備	1 式	1.0	1.0	1.0	
除	塵	設 備	2 台分	0.5	1.0	標準点検工数に対 し、1 台増える毎に 補正係数を0.5加算	
付属設備		ン 設 備 ・ 照 明 設 備 屋内排水設備	1 式	1.0	1.0	1.0	
確	認	運 転	2 台分	0.7	1.0	標準点検工数に対し、1 台増える毎に 補正係数を0.3加算	

表-20・38 主ポンプ台数補正係数 (管理運転点検・目視点検)

項目	主ポンプ台数				
項目	1台	2台	3 台	4台	5 台以上
点検構成人員	_	1. 0	1.0	1.0	1. 25

(ロ) 原動機形式補正

原動機の形式による工数補正は、年点検は、表 $-20\cdot39$ により、管理運転点検・目視点検は、表 $-20\cdot40$ による補正を行う。

表-20・39 主原動機形式補正係数(年点検)

作業区分		主原動機区分		
機械名	数量	ディーゼルエンジン (標準点検工数) ガスタービン 電動機		
主ポンプ駆動設備	2 台分	1.0	0.9	0.3
系 統 機 器 設 備	1 式	1.0	0.4	0.4
確 認 運 転	2 台分	1.0	0.8	0.6

(注) 系統機器設備は、機場の機器構成に応じて適宜補正を行うこと。

表-20・40 主原動機形式補正係数(管理運転点検・目視点検)

_		主原動機区分	
項目	ディーゼルエンジン (標準点検工数)	ガスタービン	電動機
点検構成人員	1.0	1.0	0.75

(4) 加算工数

角落しの工数は、表-20・41を標準とする。

表-20·41 加算工数 (時間)

	作 業 区 分					加算工数	
	機	械	名		数量	加昇上級	
角	落	l	設	備	1式	0.7	

2-2 整備工数

(1) 潤滑油交換工数

潤滑油交換工数は、表-20・42を標準とする。

表-20・42 潤滑油交換工数

区 分 標準整備工数		摘要	職種別構成割合(%)		
	保华登佣工数	順 安	点検整備工	普通作業員	
ディーゼルエ ン ジ ン	y=0.0165x+3.6 (時間/台)	x:1 台当り潤滑油量 (L/台)	00	10	
歯 車 減 速 機	y=0.0084x+2.3 (時間/台)	x:1台当り潤滑油量 (L/台)	90	10	

(注) 潤滑油交換工数の適用範囲は、潤滑油交換に伴う準備、交換作業、清掃、後片付けまでとし、 フラッシングは含まない。

基準の解説

1 適用範囲

月点検は原則として管理運転点検とし、管理運転が出来ない場合は、目視点検として設備条件に適合し た内容で工数を算出するものとする。

2 点検原価

2-1 点検工数(年点検)

異なる吐出量のポンプにおける点検工数の算出方法は、作業区分の数量が一式の項目については全ポンプの平均吐出量を、台数の項目については各々の吐出量より求めた標準点検工数を、各作業区分別工数比率により算出し、補正を行うものとする。

第2 コラム形水中ポンプ設備

1 適用範囲

この基準は、コラムパイプに水中モータポンプを取付けて排水を行うコラム形水中ポンプ設備の点検・整備に適用する。

1-1 適用条件

この基準が適用出来るポンプ形式,ポンプロ径,計画吐出量及び揚程範囲は,表-20・43 を標準とする。

表-20・43 ポンプ形式、ポンプロ径、計画吐出量及び揚程範囲

ポンプ形式	ポンプロ径	計画吐出量	揚程範囲
コラム形着脱式 立軸斜流水中モータポンプ	600~800 mm	0.7∼1.5m³/s	3∼10m

1-2 区分及び構成

コラム形水中ポンプ設備の区分及び構成は、表-20・44による。

表-20・44 区分及び構成

	区		分			構成
ポ	ンプ	ユ	11	ット		ポンプ本体,付属品
電	源 •	操	作	設備	前	発電装置(原動機,交流発電機,内蔵燃料槽,始動用蓄電池,充電器,発電機盤,操作盤),接地端子箱,ケーブル,ケーブルリール,保護装置,接続盤
コ :	ラムパイ	プ,	配管	・弁判	頁	コラムパイプ,吐出弁,吐出管,継手
水		位		言	+	水位計
除	塵		設	偱	前	除塵機
付	属		設	偱	前	スクリーン、照明設備、補助燃料タンク

(注) 発電装置から独立して設置する操作盤は、電源・操作設備に含むものとする。

2 点検・整備原価

2-1 補助材料費

補助材料費は、「①一般共通」の揚排水ポンプ設備に準ずるものとする。

2-2 直接経費

直接経費は、「①一般共通」の揚排水ポンプ設備に準ずるものとする。

2-3 点検工数

点検工数は、表-20・45を標準とする。

区分及び	引进力	単位	標準点検工数		
△万及∪		平 位	年点検	月点検	
全	般	1機場当り	2.2	1.3	
格納庫点		ポンプ1台当り	6.4	2.6	
ポンプユニット	機場点検	ポンプ1台当り	8.3	2.9	
電 源 • 操	作設備	発電装置1台当り	8.1	2.7	
コラムパイプ,	配管・弁類	コラムパイプ1基当り	2.3	0.9	
水 位	計	水位計1台当り	1.5	0.4	
除 塵 設 備		除塵機1台当り	5.3	1.9	
確 認	運 転	ポンプ 1 台当り	4.7	1.9	
取付・取外し		ポンプ 1 台当り	25	. 1	

- (注) 1. 全般には、付属設備の点検を含む。
 - 2. 標準点検工数は、取付・取外しを除き点検整備工による点検とする。
 - 3. ポンプユニットは、点検を行う場所に応じ、格納庫点検・機場点検のいずれかを計上する。
 - 4. 取付・取外しは、可搬設備(ポンプ本体、電源・操作設備)を機場において確認運転する場合に適用する。
 - 5. 取付・取外しの職種別構成割合は、点検整備工80%、普通作業員20%とする。
 - 6. 確認運転には、実排水運転、設備全体の機能確認が含まれる。
 - 7. 確認運転に伴うポンプ本体,電源・操作設備の格納庫と機場間の運搬費は,共通仮設費(運搬費)として別途計上する。
 - 8. 取付・取外しに伴う機械経費(トラッククレーン等)は、直接経費として必要に応じ別途計上する。

2-4 共通仮設費

共通仮設費は、「①一般共通」の揚排水ポンプ設備に準ずるものとする。

2-5 点検整備間接費

点検整備間接費は、「①一般共通」の揚排水ポンプ設備に準ずるものとする。

④ トンネル換気設備・トンネル非常用施設

1 適用範囲

この基準は、トンネル換気設備・トンネル非常用施設の点検・整備に適用する。

1-1 区分及び構成

トンネル換気設備・トンネル非常用施設の区分及び構成は、表-20・46のとおりとする。

区 分 成 送(排)風機 送(排)風機,減速機,主電動機,ダンパ,ベルマウス,異径管,伸縮管 送 換気ダクト等 コーナーベーン、シャッター、スロット調整板、換気ダクト、サイレンサ 排 操作制御設備 電力盤系統, 操作制御系統 煙霧透過率測定装置,一酸化炭素濃度計測装置,風向風速測定装置,計測盤 計 測 設 備 付 帯 設 備 天井 クレーン ジェットファン ジェット ブースターファン アン 操作制御設備 電力盤系統, 操作制御系統 ブースタ ーファン 計 測 設 備 煙霧透過率測定装置,一酸化炭素濃度計測装置,風向風速測定装置,計測盤 通話型通報設備, 操作型通報設備, 自動通報設備, 非常警報設備, 消火器, 消火栓設備(ポンプ,配管,水槽),誘導表示設備,給水栓設備,水噴霧設備, 常 用 施 設 操作制御設備

表-20・46 区分及び構成

1-2 適用規格

この基準を適用する機種の規格は、表-20・47を標準とする。

	区 分	適 用 規 格
送	(排)風機	口径 1,700mm から 3,550mm までを標準とする。
ジブ	ェットファン・ ースターファン	口径 630mm から 1,530mm までを標準とする。
非	防災等級AA	トンネル延長 500m から 3,500m までを標準とする。
非常用施	防災等級 A	トンネル延長 300m から 3,500m までを標準とする。
設	防災等級B	トンネル延長 200m から 2,000m までを標準とする。

表-20·47 適用規格

2 点検・整備原価

2-1 点検工数

点検工数は、「(1)標準点検工数」により求めた値を「(3)計測設備・付帯設備」及び「(4)工数補正」により補正し算出するものとする。

(1)標準点検工数

1) 送(排)風機,ジェットファン・ブースターファン,非常用施設 送(排)風機,ジェットファン・ブースターファン及び非常用施設の標準点検工数は,表-20・ 48を標準とする。

表-20・48 標準点検工数 (月点検・年点検)

				職種別構成割合(%)	
	区 分	月 点 検	月 点 検 年 点 検		普通 作業員
送	(排)風機	Y = 0.0041x + 0.2	Y = 0.0022x + 40.4	90	10
	ェットファン - スターファン	Y = 0.0008x + 2.5	Y=0.0175x-0.6	90	10
非常	防災等級AA	Y=0.0145x+28.7	Y=0.0125x+54.5		
非常用施設	防災等級 A	Y = 0.0113x + 17.7	Y = 0.0158x + 30.5	90	10
設	防災等級 B	Y = 0.0033x + 3.8	Y = 0.0085x + 4.5		

- (注) 1. 送(排)風機のYは標準工数(時間/1台分), xは口径(mm)である。
 - 2. ジェットファン・ブースターファンの Y は、標準工数 (時間/1 台分), x は口径 (mm) である。
 - 3. 非常用施設のYは標準工数(時間/1トンネル), x はトンネル延長(m)である。 (上下線が分かれているトンネルは、上下線の合計値をトンネル延長とする。)
 - 4. 月点検の内容は、主として分解を伴わず、外部からの目視による点検を行い、総合操作による機能確認を行うことを標準とする。
 - 5. 年点検の内容は、設備を主として外部から目視及び分解を伴う内部の目視点検の他、 点検用器具(テストハンマー、メガーテスタ、ノギス、マイクロメータ、シックネス ゲージ、振動計、塗膜厚計等)で点検し、簡易な給油脂を行った後、機器の単独運転、 総合操作の機能確認及び調整を行うことを標準とする。
 - 6. 標準工数の点検範囲は、送(排)風機、ジェットファン・ブースターファン、非常 用施設の点検、管理運転、準備、後片付けまでとする。
 - 7. 標準工数には、計測設備及び付帯設備の点検工数が含まれていないため、「(3)計測 設備・付帯設備」にて積上げるものとする。
 - 8. 送(排)風機の標準工数には、動翼可変設備の点検工数が含まれていないため、別途積上げるものとする。
 - 9. ジェットファン,ブースターファンの標準工数には、羽根車の手回しによる回転確認は含まれていないため、別途積上げるものとする。
 - 10. 工業用内視鏡等による確認を行う場合における必要な費用は、別途積上げるものとする。
 - 11. 分割発注等の場合の作業区分別工数は、次式によるものとする。
 - ① 送(排)風機

区分別工数(時間/台)=全体工数(時間/1台分)×作業区分別工数比率(%)

② ジェットファン・ブースターファン

区分別工数(時間/台)=全体工数(時間/1台分)×作業区分別工数比率(%)

③ 非常用施設

区分別工数(時間/トンネル)=全体工数(時間/1トンネル)

×作業区分別工数比率(%)

作業区分別工数比率は、表-20・49、表-20・50のとおりとする。

(2) 作業区分別工数比率

1)トンネル換気設備の作業区分別工数比率は、表-20・49を標準とする。

表-20・49 換気設備作業区分別工数比率 (%)

作業区	分	工数	比 率	
機械名	単 位	数量	送(排)風機	ジェットファン・ ブースターファン
送 (排) 風機又は ジェットファン・ ブースターファン	式	1	43	72
減 速 機	"	1	4	_
主 電 動 機	"	1	7	_
ダ ン パ	"	1	8	_
ベルマウス	"	1	6	_
換 気 ダ ク ト	"	1	8	_
サイレンサ	"	1	3	_
操作·制御関係	II.	1	10	17
総合機能確認	"	1	11	11
計	11	1	100	100

2) 非常用施設の作業区分別工数比率は、表-20・50を標準とする。

表-20·50 非常用施設作業区分別工数比率 (%)

	作 業 区	分		工数比率		
設	備名	単 位	数量	防災等級 AA	防災等級 A	防災等級 B
	通話型通報設備	式	1	2	3	10
通報設備	操作型通報装置	"	1	4	5	14
	自動通報設備	"	1	4	_	_
警報設備	非常警報設備	"	1	3	4	11
消	火 器	"	1	12	14	43
消火	栓 設 備	"	1	29	36	-
避難	誘 導 設 備	"	1	6	7	22
給 水	栓 設 備	"	1	7	8	_
水噴	霧設備	"	1	15	-	-
操作	制御設備	"	1	8	10	_
総合	機能確認	"	1	10	13	_
	計	"	1	100	100	100

(3) 計測設備・付帯設備

標準工数に含まれていない機器等の工数は、表-20・51を標準とする。

表-20・51 計測設備・付帯設備

(時間)

作業区分	数量	点検区分別加算工数		
TF 未 凸 刀	数 里	月点検	年点検	
煙霧透過率測定装置	2 組分	3. 8	8. 1	
一酸化炭素濃度計測装置	2 台分	3. 2	7. 6	
風向風速測定装置	1 組分	2. 3	5. 2	
計 測 盤	1 式	1. 1	2. 0	
天 井 ク レ ー ン	11	_	1. 2	

- (注) 1. 各計測装置の点検範囲は、計測部、処理部を含むものとする。
 - 2. 計測盤は、計測盤本体、表示部、記録計、計測設備電源部を含むものとする。
 - 3. 発電装置, 天井クレーン (月点検), クーリングタワーについては, 別途計上するものとする。
 - 4. 計測装置の数量が上表数量と異なる場合は、次式によるものとする。

区分別工数 (時間) = 点検区分加算工数 (時間) × (該当数量÷上表数量)

(4) 工数補正

標準工数を補正する場合は、作業区分別工数比率等を参考に行うものとする。

2-2 機械経費

点検を実施するために必要とする機械器具のうち、ジェットファン年点検に用いる高所作業車の運転時間は、表 $-20 \cdot 52$ を標準とする。

表-20・52 高所作業車の運転時間

設 備 名	機種	規格	標準運転時間
ジェットファン・ ブースターファン	高所作業車	(注) 3	D=0.051y+3.7

- (注) 1. 標準運転時間算定式の D は時間 (h), y は 1 トンネル当りの計測設備・付帯設備点 検工数を含むジェットファン設備総点検工数 (時間) である。
 - 2. Dは1トンネル当りの運転時間である。
 - 3. 高所作業車の規格については、現場条件、方法等を勘案の上決定するものとする。
 - 4. 上記標準運転時間により難い場合は、設備の規模、設備内容、点検内容等を検討し 別途積上げるものとする。

⑤ 道路排水設備

1 適用範囲

この基準は、道路排水設備の点検・整備に適用する。

1-1 区分及び構成

道路排水設備の区分及び構成は、表-20・53のとおりとする。

区 分 成 水中ポンプ(本体,水中ケーブル,ベンド,ガイドパイプ,ガイドフッ ク,ポンプ吊上げ用チェーン,ガイトコネクタ等)水位測定装置(フロー ポンプ設備 トスイッチ,電極式等)等, ポンプ槽、沈砂池、スクリーン、流入路、排水路等 排水設備 主配管及び小配管, 弁類 (逆止弁, 仕切弁等), 管継手類 (伸縮管, エ 配管設備 ルボ, チーズ, フランジ等), 配管架台等 機側操作盤, 遠方操作盤, 手元開閉器 操作制御設備 受電盤, 配電盤, 発電装置, 燃料槽 雷 源 設 クレーン装置 (チェーンブロック),換気扇,換気装置,照明設備 補助機器設備

表-20・53 区分及び構成

1-2 適用規格

この基準を適用する機種の規格は、水中ポンプ(口径 400mm 以下)を標準とする。

2 点検・整備原価

2-1 点検工数

点検工数は、「(1)標準点検工数」により求めた値を「(3)工数補正」により補正して算出するものとする。

- (1) 標準点検工数
 - 1) 道路排水設備

道路排水設備の点検工数は、表-20・54を標準とする。

区分	標準点検工数 (時間/1 台分)	自家発電設備標準点検工数 (時間/1設備)		
月 点 検	Y = 0.003x + 2.4	Y = 0.002x + 3.2		
年 点 検	Y = 0.03x + 3.3	Y = 0.03x + 5.7		

表-20・54 標準点検工数

- (注) 1. Y は標準工数 (時間/1 台分), x は 1 台当りのポンプロ径 (mm) である。
 - 2. 標準工数は、点検整備工による点検を標準とする。
 - 3. 標準工数の点検範囲は、ポンプ設備、操作制御設備、配管設備、補助機器設備、電源設備(自家発電設備を除く)の点検、試運転、準備、後片付けまでとする。
 - 4. 自家発電設備の点検工数は、1設備当りの加算工数式による。

(2) 作業区分別工数比率

区分別工数比率は、表-20・55のとおりとする。

表-20・55 作業区分別工数比率 (%)

作	業 区 分	工 数 比 率		
機械名	単 位	数量	月 点 検	年 点 検
排水設備	台	1	87	86
操作制御設備	式	1	13	14
計			100	100

(注) ポンプ設備は1台当り、操作制御設備は1設備当りとする。

(3) 工数補正

標準工数により難い場合は、設備の規模、設備の内容を検討し作業区分別工数比率等を参考に補正 するものとする。

⑥ 消融雪設備

1 適用範囲

この基準は、消融雪設備のうち消雪設備の点検・整備に適用する。

1-1 区分及び構成

消融雪設備(消雪設備)の区分及び構成は、表-20・56のとおりとする。

表-20・56 区分及び構成

	区	分		構成
井			戸	ポンプ室、弁類、流量計室、送水管
取	水	施	設	取水ゲート,スクリーン,除塵機,取水ポンプ設備,取水槽,沈砂槽
ポン	/プ,	電気設	设備	ポンプ、制御盤、降雪検知器、受電設備
散	水	配	管	散・送水管、保護コンクリート、ノズル、ドレーン

1-2 適用規格

この基準を適用する設備の規格は、消雪設備(散水延長 4,000[m]以下/1 設備)の点検・整備に適用する。

融雪設備の点検・整備は、別途積算すること。

2 点検・整備原価

2-1 点検工数

点検工数は、「(1) 点検工数」によるものとし、車道、歩道、駐車場等による補正は行わないものとする。

(1) 点検工数

消雪設備の点検工数は、表-20・57のとおりとする。

表-20・57 点検工数

	区分			点検工数		
				点検整備工	普通作業員	
井戸,	ポンプ及び電気	l 設備 (地	下水利用)	0.47 [人/設備]	_	
取水施設	,ポンプ及び電気	設備(河川・	湖沼水利用)	0.63 [人/設備]	0.30 [人/設備]	
散	水	配	管	0.10 [人/100m]	0.23 [人/100m]	

- (注) 1. 本歩掛は,降雪期前点検であり,降雪期間中点検,降雪期後点検,臨時点検は別途 積算すること。
 - 2. 点検工数の点検範囲は、井戸(地下水利用)、取水施設(河川・湖沼水利用)、ポンプ及び電気設備、散水配管の点検、ノズルの清掃調整、試運転、準備、後片付けまでとする。
 - 3. ポンプの運転に発動発電機が必要な場合は、別途計上するものとする。

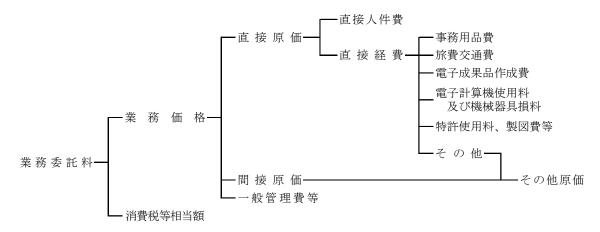
(2) 交通誘導警備員

消雪設備の点検に必要な交通誘導警備員は、必要に応じて計上するものとする。

2-2 整備工数

井戸の簡易揚水試験,井戸清掃,ポンプ引き上げ,ノズル取替え,漏水個所修繕,電気設備等の部品の取替えは、別途積算すること。

第 21 章 機械設備設計業務委託


① 一般共通

1 適用範囲

この積算基準は、岡山県の治水事業、道路事業等における機械設備に係わる設計業務に適用するものとする。

2 業務委託料

業務委託料の構成

3 業務委託料構成費目の内容

3-1 直接原価

(1) 直接人件費

直接人件費は、業務処理に従事する技術者の人件費とする。

(2) 直接経費

直接経費は、業務処理に必要な経費のうち、次の1)から5)までに掲げるものとする。

- 1) 事務用品費
- 2) 旅費交通費
- 3) 電子成果品作成費
- 4) 電子計算機使用料及び機械器具損料
- 5) 特許使用料,製図費等 これ以外の経費については、その他原価として計上する。

(3) その他原価

その他原価は、間接原価及び直接経費(積上計上するものを除く。)からなる。

なお,特殊な技術計算,図面作成等の専門業に外注する場合に必要となる経費,業務実績の登録 等に要する費用を含む。

3-2 間接原価

当該業務担当部署の事務職員の人件費及び福利厚生費、水道光熱費等の経費とする。

3-3 一般管理費等

業務を処理する建設コンサルタント等における経費等のうち、直接原価、間接原価以外の経費とする。

一般管理費等は,一般管理費及び付加利益よりなる。

(1) 一般管理費

一般管理費は、建設コンサルタント等の当該業務担当部署以外の経費であって、役員報酬、従業員給与手当、退職金、法定福利費、福利厚生費、事務用品費、通信交通費、動力用水光熱費、広告宣伝費、交際費、寄付金、地代家賃、減価償却費、租税公課、保険料、雑費等を含む。

(2) 付加利益

付加利益は、当該業務を実施する建設コンサルタント等を、継続的に運営するのに要する費用であって、法人税、地方税、株主配当金、役員賞与金、内部保留金、支払利息及び割引料、支払保証料その他の営業外費用等を含む。

3-4 消費税等相当額

消費税等相当額は、消費税及び地方消費税相当分の費用である。

4 業務委託料の積算

- 4-1 建設コンサルタントに委託する場合
 - (1) 業務委託料の積算方式

業務委託料は、次の方式により積算するものとする。

業務委託料= (業務価格) + (消費税等相当額)

- = [「(直接人件費) + (直接経費) + (その他原価) } + (一般管理費等)] × [1+ (消費税率)]
- (2) 各種構成要素の算定
 - 1) 直接人件費

設計業務等に従事する技術者の人件費とする。

なお、名称及びその基準日額は、別途定める。

2) 直接経費

直接経費は、3-1 (2) の各項目について必要額を積算するものとし、旅費交通費については、各所管の「旅費取扱規則」及び「日額旅費支給規則」等に準じて積算するものとする。

3-1 (2) の各項目以外の必要額については、その他原価として計上する。

3) その他原価

その他原価は、次式により算定した額の範囲内とする。

その他原価 = (直接人件費) $\times \alpha / (1 - \alpha)$

ただし、 α は業務原価(直接経費の積上計上分を除く。)に占めるその他原価の割合であり、3.5%とする。

- 4) 一般管理費等
 - 一般管理費等は、次式により算定した額の範囲内とする。
 - 一般管理費等 = (業務原価) $\times \beta / (1 \beta)$

ただし、βは業務価格に占める一般管理費等の割合であり、35%とする。

5) 消費税等相当額

消費税等相当額は、業務価格に消費税及び地方消費税の税率を乗じて得た額とする。

消費税等相当額 = 〔{(直接人件費) + (直接経費) + (その他原価)} + (一般管理費等)] × {1+(消費税率)} 4-2 個人(建設コンサルタント以外の個人をいう)に委託する場合(諸謝金による場合を除く) 4-1と同一の方法により積算するものとする。

ただし、その他原価、一般管理費等については算入しないものとする。

5 設計変更の積算

業務委託の変更は、官積算書を基にして次式により算出する。

直前の請負額 業 務 価 格 = 変更官積算業務価格× 直前の官積算額 (落札率を乗じた額)

変更業務委託料 = 業 務 価 格×(1+消費税率) (落札率を乗じた額)

- (注) 1.変更官積算業務価格は、官単位、官経費を基に当初設計と同一方法により積算する。
 - 2. 直前の請負額及び直前の官積算額は、消費税等相当額を含んだ額とする。

6 設計留意書の作成

予備(概略)設計業務において、その設計を通じて得た着目点、留意点等(コスト縮減の観点から後 段階設計時に一層の検討を行うべき事項)後段階の設計時に検討すべき提案をとりまとめたコスト縮減 設計留意書を作成する場合は、1業務当り、主任技師0.5人、技師(A)1.0人を別途計上するこ

ただし、これにより難い場合は、別途考慮するものとする。

7 電子成果品作成費

「機械設備工事設計業務等の電子納品要領」に基づく電子成果品の作成費用は、次の計算式により算 出するものとする。

ただし、これにより難い場合は別途考慮する。

7-1 概略設計,予備設計又は詳細設計

電子成果品作成費(千円) = 6.9 x 0.45

x:直接人件費(千円)

7-2 その他の設計業務 (7-1以外)

電子成果品作成費(千円) = 5.1 $x^{0.38}$

x:直接人件費(千円)

- (注) 1. 上式の電子成果品作成費の算出に当っては,直接人件費を千円単位(小数切捨て) で代入する。
 - 2. 算出された電子成果品作成費 (千円) は、千円未満を切り捨てる (小数切捨て) ものとする。
 - 3. 電子成果品作成費の上下限については、

7-1の場合,上限:700千円,下限:20千円

7-2の場合,上限:250千円,下限:20千円とする。

② 水門設備

1 予備設計

1-1 標準工数

河川用水門設備の予備設計工数は、表-21・1を標準とする。

表-21・1 水門設備標準設計工数

	区	分		標準工数
水	門	設	備	Y = 0.281x + 18.6
小	形水	門設	備	Y=1.147x+7.3

- (注) 1. Y は標準工数 (人工/門), x は扉体面積 (m²/門) (純径間×有効高)とする。
 - 2. 標準工数の範囲は、扉体、戸当り、開閉装置及び操作制御設備等の設計とする。
 - 3. 工数は、補正係数及び構成比を考慮した最終値で小数第 2 位を四捨五入して、第 1 位とする。
 - 4. 小形水門設備とは、扉面積が 10m²未満のゲートをいう。
 - 5. 水門設備とは、扉面積が 10m²以上 200m²未満のゲートをいう。

1-2 補正係数

(1) 開閉装置による補正

水門設備における開閉装置による補正は、表 $-21 \cdot 2$ の補正係数を乗ずるものとする。

表-21・2 開閉装置による補正

ワイヤーロープウインチ式	油圧シリンダ式	ラック式
1.0	1.0	0.9

(2) ゲート形式による補正

小形水門設備におけるゲート形式による補正は、表-21・3の補正係数を乗ずるものとする。

表-21・3 ゲート形式による補正

水門設備	小形水門設備			
シェル構造ローラゲート	ローラーゲート	スライドゲート		
1. 15	1.0	0.9		

(3) 電動 (手動) による補正

小形水門設備における開閉装置で電動式又は手動式による補正は、表 $-21\cdot 4$ の補正係数を乗ずるものとする。

表-21・4 電動(手動)式による補正

電 動 式	手 動 式
1.0	0.95

(4) 門数による補正

同形状規格のものを複数門同時設計する場合は、表-21・5の補正係数を乗ずるものとする。

表-21・5 門数による工数補正係数

門	数	2	3	4	5
補正值	系数	1.1	1.2	1.3	1.4

1-3 業務区分別工数比率

標準工数の業務内容は、表-21・6の8区分であり、業務委託内容により、工数比率で補正する。

表-21・6 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成比	11	10	14	21	29	8	2	5	100

1-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・7による。

表-21・7 職種別工数比率

(%)

職種業務区分	技師長	主任技師	技師(A)	技師 (B)	技師 (C)	技術員	計
設計計画	2	20	31	29	12	6	100
基本事項	2	11	26	37	14	10	100
詳細事項	1	10	20	31	24	14	100
設計計算	1	5	13	22	34	25	100
設 計 図	1	4	9	19	34	33	100
材料計算	0	2	8	18	30	42	100
照 查	4	24	27	29	10	6	100
概 算	1	7	18	36	23	15	100

2 現地調査

現地調査は、表 $-21 \cdot 8$ のとおりとし、必要に応じ計上する。

表-21・8 現地調査 (人/日)

職種	直接	、件 費
区分	技 師 (A)	技 師 (B)
現 地 調 査	1. 0	1. 0

3 設計協議

設計協議は、表-21・9を標準とする。

表-21・9 設計協議

(人)

		職種	直	接人件	費
区 分			主任技師	技師 (A)	技師 (B)
第1回	打ち合せ,	成果品納入時	1.0	1.0	_
中!	間 打	合 난	_	1.0	1.0

区 分	水門設備業務内容
1 設計計画	・準備作業 (資料収集等) ・作業計画
2基本事項	ゲート形式の検討決定水密方式の検討決定巻上方式の検討決定
3 詳細事項	・操作制御方式の検討決定・付属設備の仕様・配置の検討
4 設計計算	・設計計算書 ・材質・部材の検討決定 ・装置・諸元の検討決定 ・機器配置の検討決定 ・機器配置の検討決定 ・施工計画・工事工程計画の作成(概略) ・仕様書(案)の作成
5 設 計 図	一般構造図(全体配置図)・付属設備組立図・操作制御設備配置配線図・操作制御設備単線結線図・仮設図(概略)
6 材料計算	・主要部材数量表 (内訳表・集計表) ・機器数量表 (規格・容量)
7 照 查	・照査
8 概算工事費	・概算工事費の算出

③ 揚排水ポンプ設備

③-1 揚排水ポンプ設備

1 予備設計

1-1 標準工数

揚排水ポンプ設備の設計工数は、表-21・10を標準とする。

標準設計工数の適用範囲は, 渦巻, 軸流, 斜流及び水中ポンプの各形式のポンプ設備に適用する。

表-21・10 揚排水ポンプ設備標準設計工数

区分	標準工数
渦巻・水中ポンプ	Y = 0.039x + 58.6
軸流・斜流ポンプ	Y=0.025x+57.3

- (注) 1. Y は標準工数 (人/2 台), x はポンプロ径 (mm) とする。
 - 2. 標準歩掛の範囲は、渦巻・水中ポンプの場合は口径 40mm~1,200mm, 軸流・斜流ポンプの場合は口径 400mm~2,000mm の設計とする。
 - 3. 工数は、補正係数及び構成比を考慮した最終値で小数第 2 位を四捨五入して、第 1 位とする。

1-2 補正係数

(1) 台数による補正

同一口径ポンプ 2 台を標準とし、他の組合せについては標準工数に、表 $-21 \cdot 11$ の補正係数を乗ずるものとする。

表-21・11 台数による補正係数

台 数	1	2	3	4	5
補正係数	0.9	1.0	1.2	1.4	1.6

(2) ポンプ形式による補正

ポンプ形式による補正は、しないものとする。

(3) ケーシング形式による補正

ケーシング形式による補正は、表-21・12の補正係数を乗ずるものとする。

表-21・12 ケーシング形式による補正係数

形式	補正係数
コンクリートケーシング	1. 1

(4) 原動機による補正

原動機形式による補正は、しないものとする。

(5) 異種異口径による補正

異種異口径のポンプを同時に設計する場合は、各口径・形式毎に工数を求め積上げし、表-21・13の補正係数を乗ずるものとする。

表-21・13 異種異口径による補正係数

異種口径種類	1	2	3
補正係数	0. 75	0. 65	0.6

1-3 業務区分別工数比率

標準工数の業務内容は,表-21・14の8区分であり,業務委託内容により,工数比率は補正する。

表-21・14 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 查	概 算	計
構成比	10	11	16	15	27	8	5	8	100

1-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・15による。

表-21・15 職種別工数比率

(%)

職種業務区分	技師長	主任技師	技師 (A)	技師 (B)	技師 (C)	技術員	計
設計計画	5	18	32	26	13	6	100
基本事項	4	11	23	24	26	12	100
詳細事項	1	11	18	24	26	20	100
設計計算	0	9	17	22	27	25	100
設 計 図	1	5	14	20	29	31	100
材料計算	0	4	11	17	31	37	100
照 查	8	26	30	22	11	3	100
概算	1	8	18	25	29	19	100

2 現地調査

現地調査は、表 $-21 \cdot 16$ のとおりとし、必要に応じ計上する。

表-21・16 現地調査 (人/日)

職種	直接	人 件 費
区分	主任技師	技師(A)
現地調査	1.0	1.0

3 設計協議

設計協議は、表-21・17を標準とする。

表-21・17 設計協議

(人)

職種	直	接人件	費
区分	主任技師	技師 (A)	技師 (B)
第1回打合せ,成果品納入時	1.0	1.0	
中 間 打 合 せ	_	1.0	1.0

区分	ポンプ設備業務内容
1 設計計画	・準備作業(資料収集) ・作業計画
2 基本事項	・ポンプ形式の決定 ・土木構造物の寸法決定
3 詳細事項	・ポンプ全揚程,計画実揚程の決定・ポンプ仕様,原動機出力の決定・補機の選定,配置の検討・操作制御方式の検討・付属設備の仕様,配置の決定
4 設計計算	・設計計算書 ・各部応力計算 ・材質,部材の検討決定 ・施工計画・工事工程計画の作成(概算) ・仕様書(案)の作成
5 設 計 図	・一般構造図(全体,部分配置図)・電気設備図(単線接続図)・[操作制御フロー図(計装フロー図)]・[電気配線図(電気一次配線系統図)]・仮設図
6 材料計算	・[主要部材数量表 (内訳表・集計表)] ・機器数量表 (規格・容量・質量)
7 照 查	 照查
8 概算工事費	・概算工事費の算出

(注)[]内は必要に応じて歩掛を別途計上する。

③-2 除塵設備

1 予備設計

1-1 標準工数

除塵設備の設計工数は、表-21・18を標準とする。

標準設計工数の適用範囲は,除塵機においてはレーキ式及びネット式,コンベヤにおいては水平, 傾斜,チェーンフライトとし,それ以外の形式においては別途積上げとする。

表-21・18 除塵設備標準設計工数

	区 分		標準工数
除	塵	機	Y = 0.15x + 12.8

- (注) 1. Y は標準工数 (人/2基), x は設置水路面積 (m²) とする。
 - 2. 除塵設備は,水路面積 5~40m² (レーキ式), 2~25m² (ネット式) を標準とする。
 - 3. 工数は、補正係数及び構成比を考慮した最終値で、小数第2位を四捨五入して、第1位とする。

1-2 補正係数

(1) 除塵機形式による補正

除塵機形式による補正は、表-21・19の補正係数を乗ずるものとする。 また、コンベヤ形式による工数補正は、行わないものとする。

表-21・19 除塵機形式による補正係数

除塵機形式	レーキ式	ネット式	
補正係数	1.0	0.9	

(2) コンベヤ・ホッパの有無による補正

コンベヤ及びホッパの有無による補正は、表-21・20の補正係数を乗ずるものとする。

表-21・20 コンベヤ、ホッパの有無による補正係数

項目	コンベヤ	ホッパ
補正係数	1. 15	1. 10

(3) 基数による補正

除塵機 2 基を標準とし、同形状規格で複数基同時設計する場合には、表 $-21 \cdot 21$ の補正係数を乗ずるものとする。

表-21・21 基数による補正係数

基数	1	2	3	4	5
補正係数	0.9	1.0	1.2	1.4	1.6

1-3 業務区分別工数比率

標準工数の業務内容は,表-21・22の8区分であり,業務委託内容により,工数比率で補正する。

表-21・22 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成比	10	11	15	23	23	9	4	5	100

1-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・23による。

表-21・23 職種別工数比率

(%)

職種業務区分	技師長	主任技師	技師(A)	技師 (B)	技師 (C)	技術員	計
設計計画	5	18	32	26	13	6	100
基本事項	4	11	23	24	26	12	100
詳細事項	1	11	18	24	26	20	100
設計計算	0	9	17	22	27	25	100
設 計 図	1	5	14	20	29	31	100
材料計算	0	4	11	17	31	37	100
照 查	8	26	30	22	11	3	100
概 算	1	8	18	25	29	19	100

2 現地調査

現地調査は、表 $-21 \cdot 24$ のとおりとし、必要に応じ計上する。

表-21・24 現地調査 (人/日)

職種	直接	件 費	
区分	主任技師	技師 (A)	
現地調査	1.0	1.0	

3 設計協議

設計協議は、表-21・25を標準とする。

表-21・25 設計協議 (人)

	直	接人件	費	
区分		主任技師	技師 (A)	技師 (B)
第 1 回打合せ,成果	品納入時	1.0	1.0	
中 間 打	合 せ	_	1.0	1. 0

区 分	除塵設備業務内容
1 設計計画	・準備作業(資料収集) ・作業計画
2基本事項	・除塵形式の検討決定 ・コンベヤ形式の形式決定 ・ホッパ形式の検討決定
3 詳細事項	・操作制御方式の検討決定・付属設備の仕様・配置の決定
4 設計計算	・設計計算書・材質・部材の検討決定・装置・諸元の検討決定・機器配置の検討決定・施工計画・工事工程計画の作成(概略)・仕様書(案)の作成
5 設 計 図	・一般構造図(全体,部分配置図)・電気設備図(単線接続図)・[操作制御フロー図(計装フロー図)]・[電気配線図(電気一次配線系統図)]・仮設図
6 材料計算	・主要部材数量表 (内訳表・集計表) ・[塗装面積表 (内訳表・集計表)] ・機器数量表 (規格・容量・質量)
7 照 查	・照査
8 概算工事費	・概算工事費の算出

(注)[]内は必要に応じて歩掛を別途計上する。

④ ダム施工機械設備

ダム施工機械設備の設計業務における工数等は、積上げによるものとする。

⑤ トンネル換気設備・トンネル非常用施設

⑤-1 トンネル換気設備

1 詳細設計

1-1 設計工数

設計工数の適用範囲は、表-21・31、表-21・32の設備に適用する。 トンネル換気設備の設計工数は、次式による。

Y=Y1+Y2+Y3 (人工/式)

 $Y1 = (y1 \times a1 \times b1 \times c1) \times d1/100$ (人工/式)

Y1:トンネル換気設備設計工数 (人工/式)

y1:トンネル換気設備標準工数 (人工/式)

a1:台数による補正係数 b1:口径による補正係数

c1:設備区分別補正係数

d1:トンネル換気設備の区分別比率 (%)

Y2=y2

Y2:計測設備設計工数 (人工/式) y2:計測設備標準工数 (人工/式)

Y3=y3×d3/100 (人工/式)

Y3: 受変電自家発電設備設計工数 (人工/式) y3: 受変電自家発電設備標準工数 (人工/式)

d3: 受変電自家発電設備の構成比率 (%)

1-2 標準工数

各設備の標準工数については、表-21・26を標準とする。

区分	標準工数	備 考
トンネル換気設備	y1 = 0.014x + 44.8	yl=標準工数 (人工/式) x=口径 (mm)
計 測 設 備	y2=9.1	y2=標準工数(人工/式)
受変電自家発電設備	y3=70.7	y3=標準工数(人工/式)

表-21・26 トンネル換気設備標準工数

- (注) 1. トンネル換気設備の標準工数の x の値は、口径 (mm) とする。
 - 2. 設備区分別構成比率は、表 $-21 \cdot 31$ 、表 $-21 \cdot 32$ を標準とし、設備区分中の実施しないものについては、区分別比率により補正を行うものとする。(d1, d3)
 - 3. 複数の設備(換気設備の組合せ)が同一トンネルにある場合は、加重平均により算出するものとする。
 - 4. 口径による補正係数 (b1) は、送排風機設備のみ行う。
 - 5. 工数は、補正係数及び比率(設備別、区分別)を考慮した最終値で小数第2位を四捨 五入して、第1位とする。

- 6. 計測設備標準工数には、VI 計、CO 計及び AV 計等を含む。
- 7. 複数のトンネルを同時に発注する場合には、別途考慮するものとする。

1-3 補正係数

- (1) 台数による補正係数 (a1) 「ジェットファン・ブースターファン設備,送排風機設備」
 - 1) ジェットファン・ブースターファン設備の台数による補正は、表 $-21\cdot 27$ の補正係数を乗ずる にものとする。

表-21・27 台数による補正係数 (ジェットファン・ブースターファン設備)

台数(台)	1	2	3~6	7~10	11~16	17 以上
補正係数	1.0	1.1	1.2	1.3	1.4	1.5

2) 送排風機設備の台数による補正係数は、表-21・28の補正係数を乗ずるものとする。

表-21・28 台数による補正係数(送排風機設備)

台数(台)	1	2	3~4	5~6	7~8	9~10	11 以上
補正係数	1.0	1.1	1.2	1.3	1.4	1.5	1.6

(2) 口径による補正係数 (b1) 「送排風機設備」

送排風機の口径による補正係数は、表-21・29の補正係数を乗ずるものとする。

表-21・29 口径による補正係数(送排風機設備)

口 径 (mm)	D<2,000	2,000≦D<3,000	3,000≦D
補正係数	1.0	1. 1	1. 2

(3) 設備区分別補正(c1)

設備区分毎の補正は、表-21・30の補正係数を乗ずるものとする。

表-21・30 設備区分別補正係数

訍	備 区	分	ジェット ファン	ブースター ファン	送排風機	半横流	横流	サッカルド	送排風機+ 集塵機
補	i E	率	1.0	0.8	1.0	1.2	1.5	1. 1	1.5

1-4 設備の区分別比率

(1) トンネル換気設備の区分別比率 (d1)

トンネル換気設備の区分別比率は、表-21・31によるものとする。

表-21・31 トン	イル授えは政備し	万区万万比平	(%)
設 備		区分	区分別比率
換気設備(ジェットファン)	ジェット	ケーシング	
	ファン	ファンロータ	75
		電動機	75
		支持装置等	
	操作制御	操作・(自動) 制御盤	0.5
		配管・配線等	25
換気設備(送排風機)	送排風機	ケーシング	
		ファンロータ	1
		動力伝達装置	54
		減速機	
		電動機等	
	付属装置	ベルマウス	
		接続管	
		異形管	19
		ダンパ等	
	搬入搬出	天井クレーン等	10
	操作制御	操作・(自動) 制御盤	15
		配管・配線等	17
換気設備 (横流式)	送排風機	ケーシング	
		ファンロータ	
		動力伝達装置	44
		減速機	1
		電動機等	1
	付属装置	ベルマウス	
		接続管	1.0
		異形管	16
		ダンパ等]
	搬入搬出	天井クレーン等	7
	操作制御	操作・(自動)制御盤	1.4
		配管・配線等	14
	補助機器	コーナーベーン	
		スロット調整弁	10
		仕切弁	19
		ダクト等	
換気設備(半横流式)	送排風機	ケーシング	
		ファンロータ	
		動力伝達装置	44
		減速機	
		電動機等	
•			

(つづく)

設 備		区 分	区分別比率		
換気設備 (半横流式)	付属装置	ベルマウス			
		接続管	- 10		
		異形管	16		
		ダンパ等			
	搬入搬出	天井クレーン等	8		
	操作制御	操作・(自動)制御盤			
		配管・配線等	15		
	補助機器	コーナーベーン			
		スロット調整弁			
		仕切弁	17		
		ダクト等			
換気設備 (サッカルド)	送排風機	ケーシング			
		ファンロータ			
		動力伝達装置	49		
		減速機			
		電動機等			
	付属装置	ベルマウス			
		接続管			
		異形管	14		
		ダンパ等			
	搬入搬出	天井クレーン等	10		
	操作制御	操作・(自動) 制御盤	10		
		配管・配線等	13		
	補助機器	コーナーベーン			
		スロット調整弁			
		仕切弁	14		
		ダクト等			
換気設備 (送排風機+集塵機)	送排風機	ケーシング			
		ファンロータ			
		動力伝達装置	31		
		減速機			
		電動機等			
	付属装置	ベルマウス			
		接続管			
		異形管	9		
		ダンパ等			
	集塵装置	フィルター			
		集塵装置等	40		
	搬入搬出	天井クレーン等	7		
	操作制御	操作・(自動)制御盤			
		配管・配線等	13		

(2) 受変電自家発電設備の区分別比率 (d3)

受変電自家発電設備の区分別比率は、表-21・32によるものとする。

表-21・32 受変電自家発電設備の区分別比率 (%)

設 備	区 分	区分別比率
受変電設備	受電設備	11
	変電設備	20
	配電設備	18
自家発電設備	自家発電設備	33
直流・無停電電源設備	直流電源設備	7
	無停電電源装置	11

1-5 業務区分別工数比率

標準工数の業務内容は、表-21・33の8区分であり、業務委託内容により、工数比率で補正する。

表-21・33 業務区分別工数比率

(%

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照査	概算	計
構成比	3	7	12	25	26	14	8	5	100

1-6 職種別工数比率

業務区分毎の職種別工数比率は、表-21・34による。

表-21・34 職種別工数比率

(%)

業務	外	職	種	技	師	長	主任技師	技師 (A)	技師 (B)	技師 (C)	技 術 員	計
設	計	計	画		8		18	32	29	7	6	100
基	本	事	項		3		11	20	30	26	10	100
詳	細	事	項		0		10	20	25	26	19	100
設	計	計	算		1		6	16	22	27	28	100
設	間口	+	図		1		4	13	19	29	34	100
材	料	計	算		0		4	8	21	28	39	100
照			查		8		27	27	21	12	5	100
概			算		0		11	21	25	27	16	100

2 現地調査

現地調査は、表 $-21 \cdot 35$ のとおりとし、必要に応じ計上する。

表-21・35 現地調査 (人/日)

職種	直接	人件費
区分	技師 (A)	技師(B)
現 地 調 査	1.0	1.0

3 設計協議

設計協議は、表-21・36を標準とする。

表-21・36 設計協議

	表-21・36 設計協議							
	職種直接人権費					費		
区	分			_	主任技師	技師 (A)	技師 (B)	
第 1	回打合	せ,成	果品納	入時	1.0	1.0	_	
中	間	打	合	せ	_	1.0	1.0	

区 分	トンネル換気設備業務内容
1 設計計画	・準備作業 (資料収集等) ・作業計画
2 基 本 事 項	・設計条件の整理・交通量の算定・所要換気量の算定・土木構造物の寸法決定
3 詳細事項	・換気設備仕様・配置の決定・計測設備仕様・配置の決定・制御方式の検討決定・受変電自家発電設備仕様・配置の決定
4 設計計算	・各設備の負荷及び容量計算・各部応力計算・使用材料・材質・部材寸法の決定・施工計画・工事工程計画の作成・騒音検討計算・特記仕様書(案)の作成
5 設 計 図	 ・一般構造図(全体図,部分配置図) ・部分組立図(ブロック図) ・詳細図(部分別詳細図) ・機器図(外形図・構造図) ・操作制御設備配置配線図 ・操作制御設備単線結線図 ・配管配線系統図 ・仮設図
6 材料計算	・材料数量表 (内訳表・集計表) ・塗装面積表 (内訳表・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・照査
8 概算工事費	・概算工事費の算出

⑤-2 トンネル非常用施設

1 詳細設計

1-1 設計工数

設計工数の適用範囲は、表-21・39の設備に適用する。 トンネル非常用施設の設計工数は、次式による。

Y = Y1

$Y1 = y1 \times a1 \times d1$

Y1:トンネル非常用施設設計工数 (人工/式) y1:トンネル非常用施設標準工数 (人工/式)

a1:等級による補正

d1:トンネル非常用施設の設備別比率または構成別比率 (%)

1-2 標準工数

各設備の標準工数については、表-21・37を標準とする。

表-21・37 トンネル非常用施設標準工数

区 分	標準設計工数	備考
トンネル非常用施設	$y1 = 0.004 \times x + 106.9$	y1=標準工数 (人工/式) x=トンネル延長 (m)

(注) 1. x はトンネル延長 (m) とする。

なお、上下線に分かれている場合は、上下線を合計した延長で工数を算出するものと する。

- 2. トンネル非常用施設の設備別比率又は構成別比率は、表-21・39を標準とし、設備構成中の実施しないものについては、設備別比率又は構成別比率により補正を行うものとする。(d1)
- 3. 工数は、補正係数及び構成比を考慮した最終値で小数第 2 位を四捨五入して、第 1 位とする。
- 4. トンネル等級Aの施設で等級AAと同様な施設を設置する場合は、等級AAにより標準工数を算出し、設備別比率及び構成別比率により補正するものとする。
- 5. 複数のトンネルを同時に発注する場合は、別途考慮するものとする。

1-3 補正係数

(1) 等級による補正係数 (a1)

トンネル等級による工数の補正は標準工数に、表-21・38の補正係数を乗ずるものとする。

表-21・38 等級による工数補正係数

等 級	AA	A	В	С
補正係数	1.9	1.0	0.6	0.5

1-4 設備別比率及び構成別比率 (d1)

設備別比率及び構成別比率は、表-21・39によるものとする。

			AA			A		
設 備	構成	設置内容	構成別比率	設備別比率	設置内容	構成別比率	設備別比率	
通報・警報設備	非常電話	0	4		0	8		
	押しボタン式通報装置	0	4	25	0	11	36	
	火災検知器	0	10	25	_	_	30	
	非常警報装置	0	7		0	17		
消火設備	消火器	0	3	23	0	7	54	
	消火栓	0	20	23	0	47	UT	
避難誘導設備	誘導表示板	0	3	13	0	10	10	
	排煙設備又は避難通路	0	10	13	_	_	10	
その他設備	給水栓	0	4		_	_		
	水噴霧設備	0	18	39	_	_	_	
	監視装置	0	17		_	_		

			В			С	
設 備	構 成	設置内容	構成別比率	設備別比率	設置内容	構成別比率	設 備 別 比 率
通報・警報設備	非常電話	0	14		0	23	
	押しボタン式通報装置	0	18	61	0	30	100
	火災検知器	_	_	61	_	_	100
	非常警報装置 ○ 29				0	47	
消火設備	消火器	0	21	21	_	_	
	消火栓	_	_	21	_	_	_
避難誘導設備	誘導表示板	0	18	18	_	_	
	排煙設備又は避難通路	_	_	10	_	_	
その他設備	給水栓	_	_		_	_	
	水噴霧設備	_	_	_	_	_	_
	監視装置	_	_		_	_	

1-5 業務区分別工数比率

標準工数の業務内容は、表-21・40の8区分であり、業務委託内容により、工数比率で補正する。

表-21・40 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照査	概算	計
構成比	6	7	10	16	28	20	6	7	100

1-6 職種別工数比率

業務区分毎の職種別工数比率は、表-21・41による。

表-21・41 職種別工数比率

(%)

	I	哉	種	技	師	長	主任技師	技師 (A)	技師 (B)	技師 (C)	技 術 員	計
業務	务区分	7	\									
設	計	計	画		5		20	41	34	0	0	100
基	本	事	項		0		13	28	34	25	0	100
詳	細	事	項		0		12	21	26	22	19	100
設	計	計	算		0		6	17	23	28	26	100
設	Ì	+	図		0		2	7	17	31	43	100
材	料	計	算		0		0	5	18	30	47	100
照			査		6		34	36	24	0	0	100
概			算		0		5	19	21	30	25	100

2 現地調査

現地調査は、表 $-21\cdot 42$ のとおりとし、必要に応じ計上する。

表-21・42 現地調査 (人/日)

- 1	(I	/ i	Ξ)
- 1	しハ	 - [⊐ .

職種	直接人件費			
区分	技師 (A)	技師(B)		
現 地 調 査	1.0	1.0		

3 設計協議

設計協議は、表-21・43を標準とする。

表-21・43 設計協議 (人)

	職種	直接人件費				
区 分		主任技師	技師 (A)	技師 (B)		
第 1 回打合せ	,成果品納入時	1.0	1.0			
中間	打 合 せ	_	1.0	1.0		

区 分	トンネル非常用施設業務内容
1 設計計画	・準備作業(資料収集等) ・作業計画
2 基 本 事 項	・トンネル等級区分の決定・設備の基本配置計画・管理体制の決定・土木構造物の寸法決定
3 詳細事項	・各設備仕様・配置の決定 ・配管・配線布設の検討決定 ・制御方式の検討決定
4 設計計算	・各設備の負荷及び容量計算 ・使用材料・材質・部材寸法の決定 ・施工計画・工事工程計画の作成 ・特記仕様書(案)の作成
5 設 計 図	・一般構造図(全体配置図) ・詳細図(部分別詳細図) ・機器図(外形図・構造図) ・機器箱抜き図 ・操作制御設備配置配線図 ・操作制御設備単線結線図 ・配管配線系統図 ・仮設図
6 材料計算	・材料数量表 (内訳表・集計表) ・塗装面積表 (内訳表・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・照査
8 概算工事費	・概算工事費の算出

⑥ 消融雪設備

1 詳細設計

1-1 適用範囲

この基準は、消雪設備(地下水利用、河川水利用)及び融雪設備(空気熱利用、電熱利用)に適用する。

なお, 修繕設計は, 別途積上げによるものとする。

【消雪設備】

地下水: 地下水を取水し,路面に散水して消雪を行う設備で,井戸,ポンプ,送・散水管及び制御設備で構成される。

河川水:河川水を取水し,路面に散水して消雪を行う設備で,取水槽,ポンプ,送・散水管及び 制御設備で構成される。

【融雪設備】

空気熱:空気の熱を高温高圧にし、路面に埋設した放熱管に循環させ融雪を行う設備で、ヒートポンプ、放熱管及び制御設備で構成される。

電 熱:電力により路面に埋設された発熱線を加熱し融雪を行う設備で、ロードヒーティング、発熱線及び制御設備で構成される。

1-2 標準工数

消融雪設備の設計工数は、各消融雪区分毎に算出を行うものとし、表-21・44を標準とする。

区	分	標準工数	適用施工範囲		
※ 乗 池 供	地下水	Y = 0.0133x + 31.8	x:消雪延長 (2,500m以下)		
消雪設備	河川水	Y = 0.0164x + 35.8	x:消雪延長 (5,000m以下)		
斯 電 池 供	空気熱	Y = 0.0044x + 58.2	x:融雪面積 (3,000m²以下)		
融雪設備	電 熱	Y = 0.0097x + 26.0	x:融雪面積 (3,500m²以下)		

表-21・44 設計標準工数

- (注) 1. Y は標準工数 (人工/式), x は消雪延長 (m), 融雪面積 (m²) とする。
 - 2. 工数は、補正係数及び工数比率を考慮した最終値で小数第 2 位を四捨五入して、第 1 位とする。
 - 3. 下記の地下水及び河川水の水源調査等は標準工数に含まれる。

地下水:周辺井戸の揚水試験結果,さく井柱状図等の資料収集を行い,帯水層厚, 地下水位、揚水量及び揚水による影響圏等の机上予測。

河川水:河川の流況,形状(断面等),流量,水温,水位,土砂や浮遊物の流入状況等の資料収集,現地調査による取水箇所及び揚水量等の机上予測。

- 4. 消融雪方式及び現場条件が同一で近接する箇所は、箇所数に係らず x に消雪延長又は融雪面積の合計値を代入するものとする。
- 5. 消融雪方式が異なる箇所を2箇所同時設計する場合,又は現場条件が異なる箇所を2箇所同時設計する場合は、次式により箇所数の補正を行う。

設計工数= (標準工数 Y1+標準工数 Y2) ×a

a: 箇所数による補正

1-3 補正係数

(1) 箇所数による補正 (a)

2箇所同時設計する場合は、標準工数に表-21・45の補正係数を乗ずるものとする。

表-21・45 箇所数による補正係数

現	場		数	2 箇 所
補	正 係		数	0.85

(注) 3 箇所以上の場合は、別途考慮する。

1-4 業務区分別工数比率

標準工数の業務内容は,表 $-21\cdot46$,表 $-21\cdot47$ の 8 区分であり,業務委託内容により,工数比率で補正する。

表-21・46 業務区分別工数比率【消雪設備】

(%)

業務	区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構力	戈 比	7	10	18	22	21	12	4	6	100

表-21・47 業務区分別工数比率【融雪設備】

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成上	5	11	15	15	26	19	4	5	100

1-5 職種別工数比率

業務区分毎の職種別工数比率は、表-21・48、表-21・49による。

表-21・48 職種別工数比率【消雪設備】

(%)

職種業務区分	主任技師	技師(A)	技師 (B)	技師(C)	技術員	計
設計計画	18	46	26	10	0	100
基本事項	0	0	29	29	42	100
詳細事項	0	19	26	28	27	100
設計計算	3	24	32	28	13	100
設 計 図	0	6	21	36	37	100
材料計算	0	0	12	47	41	100
照 查	30	70	0	0	0	100
概 算	0	20	14	55	11	100

職種業務区分	主任技師	技師(A)	技師 (B)	技師 (C)	技術員	ii
設計計画	33	67	0	0	0	100
基本事項	0	27	22	20	31	100
詳細事項	0	18	25	33	24	100
設計計算	4	19	22	22	33	100
設 計 図	0	15	22	22	41	100
材料計算	0	15	26	24	35	100
照 查	47	53	0	0	0	100
概 算	0	30	25	25	20	100

2 現地調査

現地調査は、表 $-21 \cdot 50$ のとおりとし、必要に応じ計上する。

表-21・50 現地調査 (人/日)

職種	直接	人 件 費	備考
区分	技師(A)	技師 (B)	1
現地調査	0.5	0. 5	1 箇所の場合
一 地 神 宜	1.0	1.0	2 箇所の場合

3 設計協議

設計協議は、表-21・51を標準とする。

表-21・51 設計協議 (人)

	職種	直接人件費				
区 分		主任技師	技師 (A)	技師 (B)		
第1回打合	せ,成果品納入時	0.5	0.5	_		
中 間	打 合 せ	_	0.5	0.5		

	消雪設備	業務内容
区 分	地下水	河 川 水
1 設計計画	・準備作業(資料収集) ・作業計画	・準備作業(資料収集) ・作業計画
2 基本事項	・気象条件の整理 ・必要水量の算出 ・水源調査(取水量の推定) ・井戸構造の検討 ・消雪範囲の検討 ・全体必要水量の決定	・気象条件の整理 ・必要水量の算出 ・水源調査 ・消雪範囲の検討 ・全体必要水量の決定
3 詳細事項	・配管系統の検討 ・ノズル形式の決定 ・制御方法の検討	・取水施設の検討・配管系統の検討・ノズル形式の決定
4 設計計算	・配管内流量の計算 ・配管径の計算 ・損失水頭の計算 ・取水ポンプの決定 ・受配電設備の計算 ・構造物の計算 ・施工計画・工事工程計画の作成 ・特記仕様書の作成	・配管内流量の計算 ・配管径の計算 ・損失水頭の計算 ・取水ポンプの決定 ・取水構造の計算 ・受配電設備の計算 ・構造物の計算 ・施工計画・工事工程計画の作成
5 設計図	・計画平面図 ・配管系統図 ・標準断面図 ・井戸構造図 (井戸構造図・取水設備据付図) ・配管(消雪パイプ)構造図 ・取水ピット(ポンプ室)構造図 ・電気設備図 ・制御盤姿図 (制御盤姿図・単線結線図)	・計画平面図 ・配管系統図 ・標準断面図 ・取水施設構造図 ・取水施設備配管据付図 ・配管(消雪パイプ)構造図 ・電気設備図 ・制御盤姿図 (制御盤姿図・単線結線図)
6 材料計算	・材料数量表 (内訳書・集計表) ・機器数量表 (規格・容量・質量)	・材料数量表 (内訳書・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・設計照査	・設計照査
8 概 算	・概算工事費の算出	・概算工事費の算出

区 分	融雪設備業務內容
区分	空 気 熱
1 設計計画	・準備作業(資料収集)・作業計画
2 基本事項	 ・気象条件の整理 ・必要熱量の算出 ・熱源調査 ・融雪工法の検討 ・融雪範囲の検討 ・全体必要熱量の決定
3 詳細事項	 ・システム系統の検討 ・放熱管の検討 ・送集水管の検討 ・取出部の検討 ・舗装の検討 ・熱源設備の検討 ・制御方法の検討
4 設計計算	・温水循環温度の計算 ・温水循環量の計算 ・配管径の計算 ・損失水頭の計算 ・循環ポンプの決定 ・熱源規模の計算 ・熱源付帯設備の計算 ・愛配電設備の計算 ・電気配管・配線の計算 ・構造物の計算 ・構造物の計算 ・施工計画・工事工程計画の作成 ・特記仕様書の作成
5 設計図	 ・計画平面図 ・システムフロー図 ・配管系統図 ・標準断面図 ・融雪パネル割付図 ・放熱管敷設標準図 ・放熱管取出部 (バルブヘッダー) 詳細図 ・配管 (送集水管) 構造図 ・ヒートポンプ姿図 ・ヒートポンプ電気設備図 (運転フロー,制御フロー,単線結線図) ・電気設備平面図 ・受電設備図 (受電設備,引込開閉器盤図)
6 材料計算	・材料数量表 (内訳書・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・設計照査
8 概 算	・概算工事費の算出

区分	融雪設備業務內容
区ガ	電 熱
1 設計計画	・準備作業(資料収集) ・作業計画
2 基本事項	 ・気象条件の整理 ・必要熱量の算出 ・熱源調査 ・融雪工法の検討 ・融雪範囲の検討 ・全体必要熱量の決定
3 詳細事項	 ・配線配電系統の検討 ・発熱ユニットの検討 ・リードケーブルの検討 ・受配電設備の検討 ・制御方法の検討 ・舗装の検討
4 設計計算	 ・発熱線ユニットの計算 ・リードケーブルの計算 ・受配電設備の計算 ・構造物の計算 ・施工計画・工事工程計画の作成 ・特記仕様書の作成
5 設計図	 ・計画平面図 ・ヒーティングユニット割付図(割付,配線) ・標準断面図 ・ユニット布設標準図 ・各機器詳細図(ケーブル,センサー類) ・制御盤姿図(制御盤姿図・制御フロー,単線結線図) ・受電設備図(受電設備,引込開閉器盤図)
6 材料計算	・材料数量表 (内訳書・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・設計照査
8 概 算	・概算工事費の算出

⑦ 道路排水設備

1 詳細設計

1-1 標準工数

道路排水設備の設計工数は、表-21・52を標準とする。

表-21・52 道路排水設備標準設計工数

区分	標準工数
道路排水設備	Y = 20.73x + 18.3

- (注) 1. Yは標準工数 (人工/式), xは箇所数である。
 - 2. 標準工数は、ポンプ設備、操作制御設備、配管設備、電源設備及び付属設備の設計とする。
 - 3. 工数は、補正工数及び構成比を考慮した最終値で小数第2位を四捨五入して、第1 位とする。
 - 4. 標準工数は,立体交差施設(路面排水)を対象とし,地下横断歩道(単独)施設は 別途積上げるものとする。

1-2 補正工数

(1) 自家発電設備の有無による補正

自家発電設備を設計に含める場合の工数補正は、標準工数に、表 $-21 \cdot 53$ の工数を加算するものとする。

表-21・53 自家発電設備による加算工数 (人工)

自 家 発 電 設 備	有り	無し
1 設備当り加算工数	10	0

1-3 業務区分別工数比率

標準工数の業務内容は、表-21・54の8区分であり、業務委託内容により工数比率で補正する。

表-21・54 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成比	12	9	11	13	37	11	3	4	100

1-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・55による。

職種業務区分	技師長	主任技師	技師 (A)	技師 (B)	技師 (C)	技術員	計
設計計画	3	16	33	41	3	4	100
基本事項	2	10	24	30	26	8	100
詳細事項	0	5	16	27	30	22	100
設計計算	0	3	13	24	30	30	100
設計 図	0	3	11	19	27	40	100
材料計算	0	2	6	18	35	39	100
照 查	0	40	33	13	7	7	100
概算	0	5	20	20	40	15	100

2 現地調査

現地調査は、表 $-21 \cdot 56$ のとおりとし、必要に応じ計上する。

表-21・56 現地調査 (人/日)

職種	直接	件 費
区分	技師 (A)	技師 (B)
現地調査	1.0	1.0

3 設計協議

設計協議は、表-21・57を標準とする。

表-21・57 設計協議 (人)

打合世時期	直	接人件	費
11 口 区 时 朔	主任技師	技師 (A)	技師 (B)
第1回打合せ,成果品納入時	0.5	0.5	_
中 間 打 合 せ	_	0.5	0.5

区分	道路排水設備業務内容
1 設計計画	・準備作業(資料収集) ・作業計画
2基本事項	・設計条件の整理・土木構造物の寸法整理・所要排水量の算定・設備の基本配置計画の決定
3 詳 細 事 項	・ポンプ全揚程の決定・ポンプ設備仕様,配置の決定・配管布設の検討・決定・制御方式の検討・決定・配線布設の検討・決定・付属設備仕様・配置の決定
4 設計計算	・各設備の負荷及び容量計算・各部応力計算・材質,部材寸法の決定・施工計画・工事工程計画の作成
5 設 計 図	・一般構造図(全体・部分配置図) ・機器図(外形図・機器図) ・操作制御ブロック図 ・操作制御設備配置・配線図 ・操作制御設備単線結線図 ・配線・配管系統図
6 材料計算	・材料数量表 (内訳表・集計表) ・塗装面積表 (内訳表・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・照査
8 概算工事費	・概算工事費の算出

⑧ 共同溝付帯設備

1 詳細設計

1-1 標準工数

共同溝付帯設備の設計工数は、表-21・58を標準とする。

表-21・58 共同溝付帯設備標準設計工数

区 分	標準工数
換気設備	Y = 4.80x + 16.7
排水設備	Y = 1.58x + 15.2
給水設備	Y = 0.006L + 4.5

- (注) 1. 換気設備 Y は標準工数 (人工/式), x は強制換気設置箇所数とする。
 - 2. 排水設備 Y は標準工数 (人工/式), x は排水ポンプ設置箇所数とする。
 - 3. 給水設備 Y は標準工数 (人工/式), L は洞道延長 (m) とする。
 - 4. 標準工数の範囲は,換気設備,排水設備,制御設備,給水設備及び付属設備(仕切板,ポンプピット蓋等)の設計とする。
 - 5. 標準工数には、電源設備、防災安全設備及び防水扉は含まれていない。
 - 6. 工数は、構成比を考慮した最終値で小数第2位を四捨五入して、第1位とする。

1-2 業務区分別工数比率

標準工数の業務内容は、表-21・59の8区分であり、業務委託内容により工数比率で補正する。

表-21・59 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成比	12	9	12	16	32	11	4	4	100

1-3 職種別工数比率

業務区分毎の職種別工数比率は、表-21・60による

表-21・60 職種別工数比率

(%)

職種業務区分	技師長	主任技師	技師 (A)	技師 (B)	技師 (C)	技術員	計
設計計画	5	20	39	36	0	0	100
基本事項	2	12	31	41	14	0	100
詳細事項	0	0	8	30	40	22	100
設計計算	0	0	8	24	35	33	100
設 計 図	0	0	5	9	27	59	100
材料計算	0	0	0	11	62	27	100
照查	0	29	42	29	0	0	100
概 算	0	0	20	20	48	12	100

2 現地調査

現地調査は、表 $-21 \cdot 61$ のとおりとし、必要に応じ計上する。

表-21・61 現地調査 (人/日)

職種	直接人	、件 費
区分	技師 (A)	技師 (B)
現 地 調 査	1. 0	1.0

3 設計協議

設計協議は、表-21・62を標準とする。

表-21・62 設計協議

(人)

職種	直接人件費					
区分	主任技師	技師 (A)	技師 (B)			
第1回打合せ,成果品納入時	0.5	0.5				
中 間 打 合 せ	_	0.5	0.5			

区 分	共同溝付帯設備業務内容
1 設計計画	・準備作業(資料収集) ・作業計画
2 基本事項	・設計条件の整理・土木構造物の寸法整理・所要換気量の算定・所要排水量の算定・設備の基本配置計画の決定
3 詳細事項	 ・換気損失の決定 ・換気設備仕様・配置の決定 ・付属設備仕様の決定 ・ポンプ全揚程の決定 ・ポンプ設備仕様、配置の設定 ・給水管布設の検討決定 ・配線布設の検討決定 ・制御方式の検討決定
4 設計計算	・各設備の負荷及び容量計算・各部応力計算・材質、部材寸法の決定・施工計画・工事工程計画の作成・騒音検討計算
5 設 計 図	・一般構造図(全体・部分配置図) ・機器図(外形図・機器図) ・操作制御ブロック図 ・操作制御設備配置・配線図 ・操作制御設備単線結線図 ・配線・配管系統図
6 材料計算	・材料数量表 (内訳表・集計表) ・塗装面積表 (内訳表・集計表) ・機器数量表 (規格・容量・質量)
7 照 查	・照査
8 概算工事費	・概算工事費の算出

⑨ 遠方監視操作制御設備

1 管理所側設備詳細設計

1-1 標準工数

遠方監視操作制御設備(管理所側)の設計工数は、表-21・63を標準とする。

表-21・63 遠方監視操作制御設備(管理所側)

区 分	標準工数
遠方監視操作制御設備(管理所側)	Y=31

- (注) 1. Y は標準工数 (人工/箇所)とする。
 - 2. 工数は、補正係数及び構成比を考慮した最終値で、小数第2位を四捨五入して、第1位とする。

1-2 補正係数

(1) 機能(全体)による補正

機能(全体)による補正は、表 $-21 \cdot 64$ の補正係数を乗ずるものとする。

表-21・64 機能による補正係数

機能	補 正 係 数
遠方監視・操作	1.0
遠方監視のみ	0.8

(2) 施設数 (管理所) による補正

遠方監視・操作を行う施設数は、事務所又は出張所 1 箇所を標準とし、他の組合せについては、表 $-21 \cdot 65$ の補正係数を乗ずるものとする。

表-21・65 施設数(管理所)による補正係数

施設数	1 箇所	2 箇所	3 箇所	4 箇所	5 箇所
(事務所+出張所) の場合	1.0	1. 2	1. 3	1. 4	1. 5
出張所のみの場合	1.0	1. 1	1.2	1. 3	1.4

(3) 管理所の機能による補正

標準的なシステムを標準とし、他の場合については、表-21・66の補正係数を乗ずるものとする。

表-21・66 管理所の機能による補正係数

施設数	補正係数	備考
簡易なシステムの場合	0.7	標準機能・子局少数
標準的なシステムの場合	1.0	標準機能・子局多数
広域・高度なシステムの場合	1.4	特殊機能・子局多数

- (注) 1. 簡易なシステムとは、複数の水門、樋門、樋管及び水中ポンプ機場の遠方監視・操作等を行う場合とする。
 - 2. 標準的なシステムとは、複数の排水機場(水門、樋門、樋管及び水中ポンプ機場を含む)の遠方監視・操作等を行う場合とする。
 - 3. 広域・高度なシステムとは、大規模排水機場や対象施設が多数(排水機場で5箇所以上)又は遠隔管理所側に複雑な機能を有する場合とする。

1-3 業務区分別工数比率

標準工数の業務内容は、表-21・67の8区分であり、業務委託内容により、工数比率で補正する。

表-21・67 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成比	6	17	14	13	27	12	5	6	100

1-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・68による。

表-21・68 職種別工数比率

(%)

職種 業務区分	技師長	主任技師	技師(A)	技師 (B)	技師 (C)	技術員	計
設計計画	3	19	36	33	8	1	100
基本事項	1	16	25	29	21	8	100
詳細事項	0	8	22	29	30	11	100
設計計算	0	4	12	22	41	21	100
設 計 図	0	3	8	14	32	43	100
材料計算	0	2	12	20	38	28	100
照 查	3	49	16	17	12	3	100
概 算	0	4	13	38	36	9	100

2 施設側(水門設備)詳細設計

2-1 標準工数

遠方監視操作制御設備(水門設備)の設計工数は、表-21・69を標準とする。

表-21・69 遠方監視操作制御設備(水門設備)

区分	標準工数
遠方監視操作制御設備 (水門設備)	Y=8

- (注) 1. Y は標準工数 (人工/箇所)とする。
 - 2. 工数は、補正係数及び構成比を考慮した最終値で小数第 2 位を四捨五入して、第 1 位とする。

2-2 補正係数

(1) 施設数(水門設備)による補正

施設 1 箇所を標準とし、複数箇所を行う場合については、表 $-21 \cdot 70$ の補正係数を乗ずるものとする。

表-21・70 施設数(水門設備)による補正係数

施設数	1 箇所	2 箇所	3 箇所	4 箇所	5 箇所	6~10 箇所	11~15 箇所	16 箇所以上
補正係数	1.0	1.3	1.5	1.7	1.9	2. 1	2. 3	2. 5

(2) 門数による補正

施設 1 箇所に設置されている門数 (1 門) を標準とし、その他の場合については、表 $-21\cdot71$ の 補正係数を乗ずるものとする。

表-21・71 門数による補正係数

施設数	1 門	2 門	3 門	4 門	5 門
補正係数	1.0	1.3	1.5	1. 7	1.9

(3) 開閉方式による補正

ワイヤーロープウインチ式を標準とし、その他の場合については、表-21・72の補正係数を乗ずるものとする。

表-21・72 開閉方式による工数補正係数

		施	設	数			補正係数
ワー	イヤ・	– п	ープ	ウイ	ンラ	チ式	1.0
ラ		ツ		ク		式	0.6
油	圧	シ	IJ	ン	ダ	式	0.8

(4) 機能による補正

機能による補正は、表-21・73の補正係数を乗ずるものとする。

表-21・73 機能による工数補正係数

		機	能	İ		補正係数
監	視			操	作	1.0
遠	方	監	視	0)	み	0.8

2-3 業務区分別工数比率

標準工数の業務内容は、表-21・74の8区分であり、業務委託内容により、工数比率で補正する。

表-21・74 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設計図	材料計算	照 査	概 算	計
構成比	6	13	19	15	23	9	8	7	100

2-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・75による。

表-21・75 職種別工数比率

(%)

職種 業務区分	技師長	主任技師	技師(A)	技師 (B)	技師 (C)	技術員	計
設計計画	7	11	40	32	7	3	100
基本事項	4	12	26	35	19	4	100
詳細事項	1	6	16	24	39	14	100
設計計算	0	2	16	26	40	16	100
設 計 図	0	3	11	15	36	35	100
材料計算	0	5	11	17	33	34	100
照 查	6	42	16	16	14	6	100
概 算	0	7	18	31	34	10	100

3 施設側(揚排水ポンプ設備)詳細設計

3-1 標準工数

遠方監視操作制御設備(揚排水ポンプ設備)の設計工数は、表-21・76とする。

表-21・76 遠方監視操作制御設備(揚排水ポンプ設備)

区分	標準工数
遠方監視操作制御設備(揚排水ポンプ設備)	Y=38

(注) 1. Y は標準工数 (人工/箇所) である。

2. 工数は、補正係数及び構成比を考慮した最終値で小数第 2 位を四捨五入して、第 1 位とする。

3-2 補正係数

(1) 施設数(揚排水ポンプ設備)による補正

機場 1 箇所を標準とし、複数箇所を行う場合については、表 $-21 \cdot 77$ の補正係数を乗ずるものとする。

表-21・77 施設数(揚排水ポンプ設備)による補正係数

施設数	1 箇所	2 箇所	3 箇所	4 箇所	5 箇所
補 正 係 数	1.0	1.3	1.5	1. 7	1.9

(2) ポンプ台数による補正

機場 1 箇所に設置されているポンプ台数 (2 台) を標準とし、その他の場合については、表-21・78 の補正係数を乗ずるものとする。

表-21・78 ポンプ台数による補正係数

台 数	1台	2 台	3 台	4 台	5台
補 正 係 数	0.9	1.0	1.2	1. 4	1.5

(3) 機場形式による補正

陸用ポンプ (標準) を標準とし、その他の場合については、表 $-21\cdot79$ の補正係数を乗ずるものとする。

表-21・79 機場形式による工数補正係数

施設数	補正係数
陸用ポンプ(標準)	1.0
陸 用 ポ ン プ (合理化機場)	0.8
陸用ポンプ(旧式機場)	1. 2
水中ポンプ	0.6

- (注) 1. 陸用ポンプ (標準) とは、管内クーラ等補機類を省略した機場をいう。
 - 2. 陸用ポンプ(合理化機場)とは、ガスタービンや高流速化などをした機場をいう。
 - 3. 陸用ポンプ(旧式機場)とは、二次冷却方式などを採用している機場をいう。
 - 4. 水中ポンプには、救急排水ポンプを含むものとする。

(4) 機能による補正

機能による補正は、表-21・80の補正係数を乗ずるものとする。

表-21・80 機能による工数補正係数

	機	能		補正係数
監	視	· 操	作	1.0
遠	方 監	視の	み	0.6

3-3 業務区分別工数比率

標準工数の業務内容は、表-21・81の8区分であり、業務委託内容により、工数比率で補正する。

表-21・81 業務区分別工数比率

(%)

業務区分	設計計画	基本事項	詳細事項	設計計算	設 計 図	材料計算	照 査	概 算	計
構成比	4	15	25	10	25	11	5	5	100

3-4 職種別工数比率

業務区分毎の職種別工数比率は、表-21・82による。

表-21・82 職種別工数比率

(%)

職種業務区分	技師長	主任技師	技師(A)	技師 (B)	技師 (C)	技術員	計
設計計画	3	18	35	35	7	2	100
基本事項	1	15	23	28	25	8	100
詳細事項	0	10	23	27	29	11	100
設計計算	0	3	13	27	39	18	100
設 計 図	0	4	11	17	29	39	100
材料計算	0	3	11	22	38	26	100
照 查	3	54	16	16	7	4	100
概 算	0	5	14	30	41	10	100

4 現地調査

現地調査は、表 $-21 \cdot 83$ のとおりとし、必要に応じ計上する。

表-21・83 現地調査 (人/日)

職種	直接	件 費
区分	技師 (A)	技師 (B)
現地調査	1.0	1. 0

5 設計協議

設計協議は、表-21・84を標準とする。

表-21・84 設計協議 (人)

職種	直接人件費			
区分	主任技師	技師 (A)	技師 (B)	
第1回打合せ,成果品納入時	1.0	1.0	_	
中間打合せ		1.0	1.0	