結核疫学調査における結核菌DNA解析データベースの活用（7）

大島伸子，河合英博，橋上博子，中嶋 洋
【調査研究】

結核疫学調査における結核菌 DNA 解析データベースの活用 (7)

Application to epidemiological investigation with DNA database of Mycobacterium tuberculosis (7)

大畠律子, 河合央博, 檀上博子, 中嶋 洋（細菌科）
Ritsuko Ohata, Hisahiro Kawai, Hiroko Danjou, Hiroshi Nakajima
（Bacteriology Section）

要 旨

岡山県では、感染経路の究明や二次感染の予防等、結核対策に資するため、県内の結核新登録患者から分離された結核菌の DNA 解析を実施し、その結果を菌株情報と融合させてデータベース化している。平成26年度は、Variable number of tandem repeats（VNTR）解析法により、散発事例や試験室内汚染、家族内感染、施設内感染及び BCG との鑑別の4つの事例で感染源究明のための解析を行った。また、感染伝播力の強さや薬剤耐性との関連から注目されている北京遺伝子型株の分離状況についても調査した。

【キーワード：結核菌、データベース、VNTR 解析、北京型】

Key words: M.tuberculosis, database, VNTR analysis, Beijing type

1 はじめに

岡山県では、結核の感染源・感染経路の究明や二次感染の予防等、結核対策に資するため、県内の結核新登録患者から分離された結核菌の DNA 解析を行い、菌株情報と融合させてデータベースを構築した。感染事例の疫学調査に活用している1,2。結核菌の遺伝子型別は、国内標準法として提唱されている JATA (12)-VNTR 解析法（以下「JATA (12)-VNTR」という。）を用い3,さらに、その型別能力を補うために、JATA (15)-VNTR 解析法（以下「JATA (15)-VNTR」という。）及び超多変 (hypervariable、HV) 領域の VNTR 解析法（以下「HV-VNTR」という。）も追加して解析を実施している4,5。

今回は、試験室内汚染疑い1例、家族内感染疑い1例、施設内感染疑い1例及び BCG との鑑別1例の計4つの事例と、その他の散発事例において、DNA解析を行いデータベースを活用して感染源を調査した。

ここで、結核菌の遺伝子型においては、世界の分離株の約3割が属し6)。我が国でも分離株の7割以上が属する北京型株 (Beijing genotype strain) が、感染伝播力の強さや薬剤耐性の関連性から結核対策上重要視されている7,8)。さらに、北京型株は新興型 (modern type) と祖先型 (ancient type) に区分され、新興型株は感染伝播が強く発病し易いと言われている9)。我が国では、過去の再燃ではなく現在の感染を反映している若年者層の結核患者で新興型株が分離される割合が高いため10)。新興型株の動向に注目する必要がある。これらのことから、平成26年度も昨年度に引き続き、北京型株の検出及び新興型と祖先型の区分も実施し、データベースに追加した。

2 材料及び方法

2.1 平成26年度の DNA 解析対象株

県内の医療機関または検査機関において分離された結核菌のうち、試験室内汚染疑い事例の2株、家族内感染疑い事例の2株、施設内感染疑い事例の4株及び BCG との鑑別1株を用い、以下の条件下発生事例61株の計70株を検出、発病する1株を除く69株で VNTR 解析を実施した。

(1) 60歳以下の塗抹陽性患者の菌株

(2) 保健所から依頼のあった菌株

・社会福祉施設等 (集団生活等) で発生した患者 (利用者、職員) の菌株

・接客業、看護師、保健師、保育士、教員、医師
等の菌株
・その他保健所長が必要と判断した患者の菌株

2.2 安全対策
感染症の予防及び感染症の患者に対する医療に関する法律(平成10年法律第114号)（以下「感染症法」という。）に基づき通知されている「特定病原体等の運搬に係る容器等に関する基準(平成19年厚生労働省告示第209号)」に従って菌株を運搬した。
また、搬入された菌株の管理は、感染症法第56条の24及び第56条の25に適合した施設で行った。

2.3 菌株からのDNA抽出
DNA抽出は、バイオセーフティーレベル3の施設内でN95微粒子用マスクを装着し、クラスⅡの安全キャビネットを使用して行った。

2.4 VNTR解析
全69株でJATA(12)-VNTR①を実施し、JATA(12)-VNTR型が69株中またはデータベース中の株と一致した場合は、JATA(15)-VNTR及びHV-VNTRを追加し、解析結果をデータベースに登録した。VNTR解析及びデータベース作成には、解析ソフトBioNumericsver7.1(APPLIEDMATHS)を用いた。

2.5事例の感染源究明
試験室内汚染疑い1事例(事例1)、家族内感染疑い1事例(事例2)、施設内感染疑い1事例(事例3)及びBCGとの鑑別1事例(事例4)の4つの事例について、患者から分離された結核菌のVNTR解析により感染源を究明した(表1)。

2.6 北京型と他の遺伝子型の区分
北京型と他の遺伝子型の区分は、Warrenらの方法①に従って実施した。

2.7 北京型株における新興型と祖先型の区分
新興型と祖先型の区分は、Mokrousovらの方法②に従って実施した。

3結果
3.1 VNTR解析結果
平成25年度に解析した結核菌69株のVNTR型を、図1に示した。
69株について、JATA(12)-VNTRとJATA(15)-VNTR及びHV-VNTRを組み合わせて解析したところ、2～3株を含む4組のクラスターが形成された(図1事例1、2、3及び①)。
69株のVNTR型をデータベース中の他株と比較したところ、クラスター①を含む13組14株がJATA(12)-VNTR、JATA(15)-VNTR及びHV-VNTR全てで一致したが、過半数が70～80歳代の患者分離株で、発病時期に数年以上の聞きがあり、患者間の関連性は認められなかった。

3.2事例の検討結果
事例1及び2は、それぞれ試験室内汚染及び家族内感染と判断された。事例3では、発病時期が他の3名と異なった患者が別の感染者と判明した。事例4では患者分離株のVNTR型がBCG株とは異なったため(図2)。免疫療法で用いられたBCG株が起因菌ではないことが判った。

3.3北京型と他の遺伝子型の区分及び北京型株における新興型と祖先型の区分
結果は、表2に示すとおりであった。試験室内汚染の1株を除いた68株中46株が北京型を示し(67.6%)。うち、新興型が11株(23.9%)で祖先型が34株(73.9%)であった。北京型株の分離状況を患者の年齢別で見ると、60歳より若い患者では新興型が38.5%であったが、60歳以上では18.8%であり(図3)。若年者層の患者において、祖先型よりも新興型の割合が高い傾向が見られた。

4考察
JATA(12)-VNTR、JATA(15)-VNTR及びHV-VNTR全てでデータベース中の他株と一致した13組14株のうち、同じ市内に居住していた20歳代の患者2名の分離株から成るクラスター①は、データベース中の同市内に居住していた30～40歳代の2名の患者分離株と一致した。4名の年齢が若いことから、最近の感染で何らかの接点が存在すると思われるが、関連性は見つけられなかった。このような潜在的な接点を検出すためには、疫学調査において、疫気感染という結核の特殊な感染
染様式を考慮に入れ、利用する施設やバス・電車等の交通機関、イベント等への参加状況などより詳細な情報を入手する必要があると思われた。

4つの感染事例の検討では、VNTR解析により感染源についての科学的な根拠を示すことが出来、接触者健診等の対応に役立てられた。

北京型の分離状況では、67.9％が北京型に属し、全国的調査結果（73.8％）および昨年度の県内の結果（77.8％）と大きな違いは無かった。

患者aは、臨床上結核症状を示していなかったが結核菌が分離され、その検体は結核患者bの検体と同時に検査されていたため、試験室内汚染が疑われた。

表1 事例の概要

<table>
<thead>
<tr>
<th>事例No.</th>
<th>所管保健所</th>
<th>相互</th>
<th>届出時年齢</th>
<th>届出発病</th>
<th>VNTR型</th>
<th>事例概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>1608</td>
<td>c 84 2014/4/14</td>
<td>一致</td>
<td>事例の概要</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1609</td>
<td>d 80 2014/8/18</td>
<td>一致</td>
<td>事例の概要</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

患者aとdは家族で、両者から分離された結核菌DNAのVNTR型が一致したので、cからdへの感染と考えられた。

患者a～hは、介護老人保健施設で職員・入所者合わせて8人が結核に感染し、うち5人が発病した集団感染事例の入所者（e、g、h）と職員（f）であった。

患者aの分離株のVNTR解析の結果、e、g、h分離株の遺伝子型は一致し、a分離株は異なっていた。

患者aは、臨床上結核症状を示していないが、結核菌が分離され、その検体は結核患者bの検体と同時に検査されていたため、試験室内汚染が疑われた。

患者a・b分離株のVNTR解析の結果、遺伝子型が一致し、aの検体は検査時にbの検体に汚染されたと考えられた。

患者cとdは家族で、両者から分離された結核菌DNAのVNTR型が一致したので、cからdへの感染と考えられた。

患者e～hは、介護老人保健施設で職員・入所者合わせて8人が結核に感染し、うち5人が発病した集団感染事例の入所者（e、g、h）と職員（f）であった。

患者e～hの分離株のVNTR解析の結果、f、g、h分離株の遺伝子型は一致し、e分離株は異なっていた。

eは発病時期が他の3名よりも早く、VNTR型も異なっていたため、集団感染と他集団感染源による発病と考えられた。

患者eは2014年4月に膀胱がんと診断され、その後BCG膀胱注入療法を同年9月までに4～5回受けていた。

この肺結核の起因菌が結核菌か膀胱がんの免疫療法に使用されたBCG株かを判断するためVNTR解析を実施し、BCG株と一致したところ、VNTR型が異なかったので（図2）、結核菌による発病と判断された。

患者iは2014年4月に膀胱がんと診断され、その免疫療法としてBCG膀胱注入療法を同年9月までに4～5回受けていた。その後、11月20日に胸部X線とCT画像で浸潤影が認められ、肺結核と診断された。

この肺結核の起因菌が結核菌か膀胱がんの免疫療法に使用されたBCG株かを判断するためVNTR解析を実施し、BCG株と一致したところ、VNTR型が異なかったので（図2）、結核菌による発病と判断された。

患者iは、免疫療法としてBCG膀胱注入療法を同年9月までに4～5回受けている。その後、11月20日に胸部X線とCT画像で浸潤影が認められ、肺結核と診断された。

この肺結核の起因菌が結核菌か膀胱がんの免疫療法に使用されたBCG株かを判断するためVNTR解析を実施し、BCG株と一致したところ、VNTR型が異なかったので（図2）、結核菌による発病と判断された。

患者iは、免疫療法としてBCG膀胱注入療法を同年9月までに4～5回受けている。その後、11月20日に胸部X線とCT画像で浸潤影が認められ、肺結核と診断された。

患者iは、免疫療法としてBCG膀胱注入療法を同年9月までに4～5回受けている。その後、11月20日に胸部X線とCT画像で浸潤影が認められ、肺結核と診断された。

患者iは、免疫療法としてBCG膀胱注入療法を同年9月までに4～5回受けている。その後、11月20日に胸部X線とCT画像で浸潤影が認められ、肺結核と診断された。
図1 平成26年度に解析した結核菌69株のVNTR型
図2 BCG株との鑑別

表2 北京型株の分離状況

患者の年齢	10-19	20-29	30-39	40-49	50-59	60-69	70-79	80-89	90-	total	%
新興型	2	1	2	1	1	4	11			11	23.9%
祖先型	1	3	2	2	3	10	13			34	73.9%
北京型										1	2.2%
不明										1	2.2%
小 計	1	5	3	4	4	11	18			46	100% 67.6
他 の 型	3	2	4	3	9	1	22				32.4
合 計	1	3	7	3	4	8	14	27	1	68*	100.0

*解析した69株中、事例1の1株（No.1569）は試験室内汚染のため除外

図3患者の年齢別北京型株分離状況

＜60歳

祖先型 61.5%
新興型 38.5%

60歳≦

新興型 18.8%
祖先型 81.3%
文献
1) 大畠律子, 中嶋洋: 結核対策における地域ベースの結核菌 RFLP 解析の意義, 日本公衆衛生雑誌, 52, 736-745, 2005
2) 大畠律子, 河合央博, 中嶋 洋: 結核疫学調査における結核菌 DNA 解析データベースの活用 (6), 岡山県環境保健センターレポート, 38, 43-47, 2014
3) 前田伸司, 村瀬良朗, 御手洗 聡, 菅原 勇, 加藤誠: 国内結核菌型別のための迅速・簡便な反復配列多型(VNTR)分析システム, 結核, 83, 673-678, 2008
4) 和田崇之, 長谷篤: 結核菌の縦列反復配列多型性(VNTR)解析に基づく分子疫学とその展望, 結核, 85, 845-852, 2010
5) 前田伸司, 和田崇之, 岩本朋忠: 国内結核菌を効率よく型別するための標準反復配列多型(VNTR)分析法, 日本細菌学雑誌, 65, 201, 2010
7) 岩本朋忠: 結核菌分子疫学研究の将来展望, 結核, 84, 789-791, 2009
13) 大畠律子, 多田敦彦: 岡山地区で分離された結核菌における Beijing family および他の遺伝子型, 結核, 79, 47-53, 2004