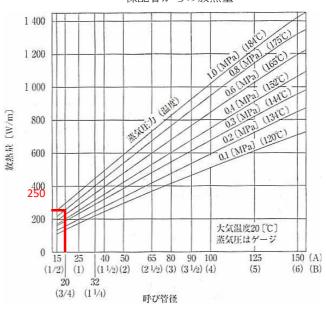

ヒアリング、現地確認の事例	助言等のポイント
・蒸気配管の未保温箇所を確認した。	・蒸気配管は、放熱を防止するために保温施工を行う必要がある。
	・配管の直管部はほとんどの場合、保温されているが、特に表面積の大き
	いフランジやバルブ部も保温すべきである。
	・フランジやバルブ部は点検・補修を容易にするために保温されていない
	場合が多く見られる。
	・また、外から見えにくい箇所の配管が保温されていない場合も見られる
	(例えば、ボイラ周辺の配管は保温されているが、天井に敷設されている
	配管は保温されていない等)
	・ボイラ室の室内温度が極端に高い場合、ボイラ本体や配管部が保温され
	ていないことが原因であることが多い。
	・放熱防止の観点から、配管の未保温箇所は全て保温していただくよう助
	言する必要がある。

【保温施工の効果試算例】

- ・配管径 20A、10m の裸管を保温シートした場合 の省エネ、省コスト効果は以下の通り。
- ・なお、蒸気圧力 $0.8\mathrm{Mpa}$ (約 175°C)、環境温度 20°C と仮定する。

重油削減量: 2,016L/年


=250W/m \times 10m \times 365 日/年 \times 24 時間/日÷ 1,000 \times 3.6MJ/kWh÷39.1MJ/L

温室効果ガス削減量:5.5t-CO2/年

- =2,016L/ \pm ×39.1MJ/L×0.0189kg-C/MJ× 44 \pm 12
- コスト削減量:161 千円/年
- =2,016L/年×80 円/L

写真:蒸気ヘッダ(保温されている 左上) 天井の配管(保温されていない 右上)

裸配管からの放熱量

